代码拉取完成,页面将自动刷新
(* ========================================================================== *)
(* FPTaylor: A Tool for Rigorous Estimation of Round-off Errors *)
(* *)
(* Author: Alexey Solovyev, University of Utah *)
(* *)
(* This file is distributed under the terms of the MIT license *)
(* ========================================================================== *)
(* -------------------------------------------------------------------------- *)
(* Functions for rational and floating-point numbers *)
(* -------------------------------------------------------------------------- *)
open Interval
open Num
let numerator = function
| Ratio r -> Ratio.numerator_ratio r
| Big_int n -> n
| Int n -> Big_int.big_int_of_int n
let denominator = function
| Ratio r -> Ratio.denominator_ratio r
| _ -> Big_int.unit_big_int
type gen_float = {
base : int;
significand : num;
exponent : num;
}
let num_of_gen_float f =
(* Bound the exponent to avoid huge numbers *)
if f.exponent <=/ Int (-100000) || f.exponent >=/ Int 100000 then
failwith "num_of_gen_float: the exponent is out of bounds"
else
f.significand */ (Int f.base **/ f.exponent)
let decode_num_str =
let split_at str ch =
let n = String.length str in
let i = try String.index str ch with Not_found -> -1 in
if i < 0 || i >= n then
str, ""
else
String.sub str 0 i,
String.sub str (i + 1) (n - i - 1)
in
let starts_with str prefix =
let len_str = String.length str and
len_p = String.length prefix in
if len_p > len_str then
false
else
String.sub str 0 len_p = prefix
in
let extract_exp str =
let s1, s2 = split_at str 'p' in
if s2 <> "" then
s1, 2, s2
else
let s1, s2 = split_at str 'e' in
if s2 <> "" then
s1, 10, s2
else
s1, 10, "0"
in
let compute_exp_shift hex base s_frac =
let n = String.length s_frac in
if n = 0 then 0 else
match (hex, base) with
| true, 2 -> n * 4
| false, 10 -> n
| _ -> failwith "Fractional part is not allowed for the given base"
in
fun str ->
let hex = starts_with str "0x" || starts_with str "-0x" in
let s_significand, base, s_exp = extract_exp str in
let s_int, s_frac = split_at s_significand '.' in
let exp_shift = compute_exp_shift hex base s_frac in
{
base = base;
significand = num_of_string (s_int ^ s_frac);
exponent = num_of_string s_exp -/ Int exp_shift;
}
let num_of_float_string str =
num_of_gen_float (decode_num_str str)
let is_nan x = (compare x nan = 0)
let is_infinity x = (classify_float x = FP_infinite)
let num_of_float x =
match classify_float x with
| FP_nan | FP_infinite ->
let msg = Printf.sprintf "num_of_float: %e" x in
failwith msg
(* if Config.fail_on_exception () then
failwith msg
else
(Log.warning_str msg; Int 0) *)
| FP_zero -> Int 0
| FP_normal | FP_subnormal ->
let m, e = frexp x in
let t = Int64.of_float (ldexp m 53) in
num_of_big_int (Big_int.big_int_of_int64 t) */ (Int 2 **/ Int (e - 53))
let log_big_int_floor b v =
let open Big_int in
let b = big_int_of_int b in
let rec loop t b' k k' =
let t' = mult_big_int b' t in
if gt_big_int t' v then
if k' = 1 then k
else loop t b k 1
else loop t' (mult_big_int b' b) (k + k') (k' + 1) in
if sign_big_int v <= 0 then -1
else loop unit_big_int b 0 1
let string_of_pos_finite_float_lo prec x =
assert (x > 0. && prec > 0);
let open Big_int in
let m, exp = frexp x in
let m, exp = big_int_of_int64 (Int64.of_float (ldexp m 53)), exp - 53 in
let two_exp = shift_left_big_int unit_big_int (abs exp) in
let ten = big_int_of_int 10 in
let n, rem =
if exp >= 0 then
shift_left_big_int m exp, zero_big_int
else
let mask = pred_big_int two_exp in
shift_right_big_int m (-exp), and_big_int m mask in
let r, e =
if sign_big_int n > 0 then
let k = log_big_int_floor 10 n + 1 in
let e = k - prec in
let b = power_big_int_positive_int ten (abs e) in
if e >= 0 then
div_big_int n b, e
else
let t = mult_big_int rem b in
let x = shift_right_big_int t (-exp) in
add_big_int (mult_big_int n b) x, e
else
let k = log_big_int_floor 10 (div_big_int two_exp rem) in
let b = power_big_int_positive_int ten (k + prec) in
let t = mult_big_int rem b in
let r = shift_right_big_int t (-exp) in
r, -(k + prec) in
let s = string_of_big_int r in
let e' = e + prec - 1 in
let s' = String.sub s 0 1 ^ "." ^ String.sub s 1 (prec - 1) in
if e' = 0 then s'
else s' ^ (if e' > 0 then "e+" else "e") ^ string_of_int e'
let string_of_pos_finite_float_hi prec x =
assert (x > 0. && prec > 0);
let open Big_int in
let m, exp = frexp x in
let m, exp = big_int_of_int64 (Int64.of_float (ldexp m 53)), exp - 53 in
let two_exp = shift_left_big_int unit_big_int (abs exp) in
let mask = pred_big_int two_exp in
let ten = big_int_of_int 10 in
let n, rem =
if exp >= 0 then
shift_left_big_int m exp, zero_big_int
else
shift_right_big_int m (-exp), and_big_int m mask in
let r, e, flag =
if sign_big_int n > 0 then
let k = log_big_int_floor 10 n + 1 in
let e = k - prec in
let b = power_big_int_positive_int ten (abs e) in
if e >= 0 then
let r, v = quomod_big_int n b in
r, e, sign_big_int v <> 0 || sign_big_int rem <> 0
else
let t = mult_big_int rem b in
let x, v = shift_right_big_int t (-exp), and_big_int t mask in
add_big_int (mult_big_int n b) x, e, sign_big_int v <> 0
else
let k = log_big_int_floor 10 (div_big_int two_exp rem) in
let b = power_big_int_positive_int ten (k + prec) in
let t = mult_big_int rem b in
let r, v = shift_right_big_int t (-exp), and_big_int t mask in
r, -(k + prec), sign_big_int v <> 0 in
let r = if flag then succ_big_int r else r in
let s = string_of_big_int r in
let s, e =
if String.length s > prec then
String.sub s 0 prec, succ e
else s, e in
let e' = e + prec - 1 in
let s' = String.sub s 0 1 ^ "." ^ String.sub s 1 (prec - 1) in
if e' = 0 then s'
else s' ^ (if e' > 0 then "e+" else "e") ^ string_of_int e'
let string_of_float_hi prec f =
match classify_float f with
| FP_infinite -> if f > 0. then "+inf" else "-inf"
| FP_nan -> "nan"
| FP_zero -> "0.0"
| _ ->
if f > 0. then string_of_pos_finite_float_hi prec f
else "-" ^ string_of_pos_finite_float_lo prec (-.f)
let string_of_float_lo prec f =
match classify_float f with
| FP_infinite -> if f > 0. then "+inf" else "-inf"
| FP_nan -> "nan"
| FP_zero -> "0.0"
| _ ->
if f > 0. then string_of_pos_finite_float_lo prec f
else "-" ^ string_of_pos_finite_float_hi prec (-.f)
let is_exact str =
let f = float_of_string str in
let n0 = num_of_float_string str in
let n1 = num_of_float f in
n0 =/ n1
let is_power_of_two n =
let n = abs_num n in
if is_integer_num n && n <>/ Int 0 then
let k = big_int_of_num n in
let pred_k = Big_int.pred_big_int k in
let r = Big_int.and_big_int k pred_k in
Big_int.eq_big_int r Big_int.zero_big_int
else
false
let next_float x =
match classify_float x with
| FP_nan -> nan
| FP_infinite ->
if x = infinity then x else nan
| FP_zero -> ldexp 1. (-1074)
| _ ->
begin
let bits = Int64.bits_of_float x in
if x < 0. then
Int64.float_of_bits (Int64.pred bits)
else
Int64.float_of_bits (Int64.succ bits)
end
let prev_float x =
match classify_float x with
| FP_nan -> nan
| FP_infinite ->
if x = neg_infinity then x else nan
| FP_zero -> ldexp (-1.) (-1074)
| _ ->
begin
let bits = Int64.bits_of_float x in
if x < 0. then
Int64.float_of_bits (Int64.succ bits)
else
Int64.float_of_bits (Int64.pred bits)
end
(* Returns the integer binary logarithm of big_int.
Returns -1 for non-positive numbers. *)
let log2_big_int_simple =
let rec log2 acc k =
if Big_int.sign_big_int k <= 0 then acc
else log2 (acc + 1) (Big_int.shift_right_big_int k 1) in
log2 (-1)
let log2_big_int =
let p = 32 in
let u = Big_int.power_int_positive_int 2 p in
let rec log2 acc k =
if Big_int.ge_big_int k u then
log2 (acc + p) (Big_int.shift_right_big_int k p)
else
acc + log2_big_int_simple k in
log2 0
(* Returns the integer binary logarithm of the absolute value of num. *)
let log2_num r =
let log2 r = log2_big_int (big_int_of_num (floor_num r)) in
let r = abs_num r in
if r </ Int 1 then
let t = -log2 (Int 1 // r) in
if (Int 2 **/ Int t) =/ r then t else t - 1
else log2 r
let float_of_pos_num_lo r =
assert (sign_num r >= 0);
if sign_num r = 0 then 0.
else begin
let n = log2_num r in
let k = min (n + 1074) 52 in
if k < 0 then 0.0
else
let m = big_int_of_num (floor_num ((Int 2 **/ Int (k - n)) */ r)) in
let f = Int64.to_float (Big_int.int64_of_big_int m) in
let x = ldexp f (n - k) in
if x = infinity then max_float else x
end
let float_of_pos_num_hi r =
assert (sign_num r >= 0);
if sign_num r = 0 then 0.0
else begin
let n = log2_num r in
let k = min (n + 1074) 52 in
if k < 0 then ldexp 1.0 (-1074)
else
let t = (Int 2 **/ Int (k - n)) */ r in
let m0 = floor_num t in
let m = if t =/ m0 then big_int_of_num m0
else Big_int.succ_big_int (big_int_of_num m0) in
let f = Int64.to_float (Big_int.int64_of_big_int m) in
ldexp f (n - k)
end
let float_of_num_lo r =
if sign_num r < 0 then
-. float_of_pos_num_hi (minus_num r)
else
float_of_pos_num_lo r
let float_of_num_hi r =
if sign_num r < 0 then
-. float_of_pos_num_lo (minus_num r)
else
float_of_pos_num_hi r
let interval_of_num n = {
low = float_of_num_lo n;
high = float_of_num_hi n
}
let interval_of_string str =
let n = num_of_float_string str in
interval_of_num n
let check_float v =
match (classify_float v) with
| FP_infinite -> "Overflow"
| FP_nan -> "NaN"
| _ -> ""
let check_interval x =
let c1 = check_float x.high in
if c1 = "" then check_float x.low else c1
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。