加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
gpu_group.c 50.50 KB
一键复制 编辑 原始数据 按行查看 历史
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670
/*
* Copyright 2010-2011 INRIA Saclay
* Copyright 2012-2014 Ecole Normale Superieure
* Copyright 2015 Sven Verdoolaege
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
* 91893 Orsay, France
* and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
*/
#include <isl/aff.h>
#include <isl/map.h>
#include <isl/constraint.h>
#include "gpu_array_tile.h"
#include "gpu_group.h"
#include "gpu_tree.h"
#include "schedule.h"
/* Print the name of the local copy of a given group of array references.
*/
__isl_give isl_printer *gpu_array_ref_group_print_name(
struct gpu_array_ref_group *group, __isl_take isl_printer *p)
{
int global = 0;
enum ppcg_group_access_type type;
type = gpu_array_ref_group_type(group);
if (type == ppcg_access_private)
p = isl_printer_print_str(p, "private_");
else if (type == ppcg_access_shared)
p = isl_printer_print_str(p, "shared_");
else
global = 1;
p = isl_printer_print_str(p, group->array->name);
if (!global && group->local_array->n_group > 1) {
p = isl_printer_print_str(p, "_");
p = isl_printer_print_int(p, group->nr);
}
return p;
}
/* Return the union of all read (read = 1) and/or write (write = 1)
* access relations in the group.
*/
__isl_give isl_union_map *gpu_array_ref_group_access_relation(
struct gpu_array_ref_group *group, int read, int write)
{
int i;
isl_union_map *access;
access = isl_union_map_empty(isl_map_get_space(group->access));
for (i = 0; i < group->n_ref; ++i) {
isl_map *map_i;
if (!((read && group->refs[i]->read) ||
(write && group->refs[i]->write)))
continue;
map_i = isl_map_copy(group->refs[i]->access);
access = isl_union_map_union(access,
isl_union_map_from_map(map_i));
}
return access;
}
/* Should this array reference group be mapped to private, shared or global
* memory?
* If we have computed both a private and a shared tile, then
* the tile with the smallest depth is used. If both have the same depth,
* then the private tile is used.
*/
enum ppcg_group_access_type gpu_array_ref_group_type(
struct gpu_array_ref_group *group)
{
if (group->private_tile && group->shared_tile &&
group->shared_tile->depth < group->private_tile->depth)
return ppcg_access_shared;
if (group->private_tile)
return ppcg_access_private;
if (group->shared_tile)
return ppcg_access_shared;
return ppcg_access_global;
}
/* Return the effective gpu_array_tile associated to "group" or
* NULL if there is no such gpu_array_tile.
*/
struct gpu_array_tile *gpu_array_ref_group_tile(
struct gpu_array_ref_group *group)
{
switch (gpu_array_ref_group_type(group)) {
case ppcg_access_global:
return NULL;
case ppcg_access_shared:
return group->shared_tile;
case ppcg_access_private:
return group->private_tile;
}
}
/* Does the tile associated to "group" require unrolling of the schedule
* dimensions mapped to threads?
* Note that this can only happen for private tiles.
*/
int gpu_array_ref_group_requires_unroll(struct gpu_array_ref_group *group)
{
struct gpu_array_tile *tile;
tile = gpu_array_ref_group_tile(group);
if (!tile)
return 0;
return tile->requires_unroll;
}
/* Given an array access "access", check if for any index i there is
* a shift a(p) and a stride g such that
*
* a(p) + i = 0 mod g
*
* If so, record the information in tile->bound[i]->stride and
* tile->bound[i]->shift.
* Otherwise, set tile->bound[i]->stride to 1 (and tile->bound[i]->shift to 0).
* Return isl_bool_true if any non-trivial stride was found.
*
* Note that the stride info returned by isl_map_get_range_stride_info
* is of the form
*
* i = o(p) + g n
*
* a(p) can therefore be taken to be equal to -o(p).
*/
static isl_bool detect_strides(struct gpu_array_tile *tile,
__isl_keep isl_map *access)
{
int i;
isl_bool has_strides = isl_bool_false;
for (i = 0; i < tile->n; ++i) {
struct gpu_array_bound *bound = &tile->bound[i];
isl_stride_info *si;
si = isl_map_get_range_stride_info(access, i);
bound->stride = isl_stride_info_get_stride(si);
bound->shift = isl_aff_neg(isl_stride_info_get_offset(si));
isl_stride_info_free(si);
if (!has_strides)
has_strides = isl_val_gt_si(bound->stride, 1);
if (has_strides < 0)
return isl_bool_error;
}
return has_strides;
}
/* Given an array access "access", remove the strides based
* on the information in tile->bound[i]->stride and tile->bound[i]->shift.
*
* In particular let the access be A[a] and
* let the shifts s_i(p) and the strides g_i be such that
*
* S(p) + a = 0 mod G
*
* Replace the access by
*
* A[(a + S(p))/G]
*
* First collect the shifts s_i into an isl_multi_aff and
* the strides into the scaling function A[i] -> A[G i].
* Then add the shifts to the original access and
* take the preimage over the scaling.
*/
static __isl_give isl_map *remove_strides(__isl_take isl_map *access,
struct gpu_array_tile *tile)
{
int i;
isl_space *space;
isl_multi_aff *shift, *scale;
isl_multi_val *stride;
space = isl_map_get_space(access);
shift = isl_multi_aff_zero(isl_space_copy(space));
space = isl_space_range(space);
stride = isl_multi_val_zero(isl_space_copy(space));
scale = isl_multi_aff_identity(isl_space_map_from_set(space));
for (i = 0; i < tile->n; ++i) {
struct gpu_array_bound *bound = &tile->bound[i];
isl_aff *shift_i;
isl_val *stride_i;
shift_i = isl_aff_copy(bound->shift);
stride_i = isl_val_copy(bound->stride);
shift = isl_multi_aff_set_aff(shift, i, shift_i);
stride = isl_multi_val_set_val(stride, i, stride_i);
}
scale = isl_multi_aff_scale_multi_val(scale, stride);
access = isl_map_sum(access, isl_map_from_multi_aff(shift));
access = isl_map_preimage_range_multi_aff(access, scale);
return access;
}
/* Check if we can find a memory tile for the given array
* based on the given accesses, and if so, put the results in "tile".
*
* We project the accesses on each index in turn and look for a parametric
* offset such that the size is constant, after removing
* any stride that may appear in the accesses.
*
* tile->depth is initialized to the input dimension of the computed bounds.
*/
static isl_bool can_tile(__isl_keep isl_map *access,
struct gpu_array_tile *tile)
{
int i;
isl_bool has_strides, valid;
isl_fixed_box *box;
isl_multi_aff *offset;
isl_multi_val *size;
if (!tile)
return isl_bool_error;
isl_map_free(isl_map_detect_equalities(isl_map_copy(access)));
has_strides = detect_strides(tile, access);
if (has_strides < 0)
return isl_bool_error;
tile->depth = isl_map_dim(access, isl_dim_in);
access = isl_map_copy(access);
if (has_strides)
access = remove_strides(access, tile);
box = isl_map_get_range_simple_fixed_box_hull(access);
isl_map_free(access);
valid = isl_fixed_box_is_valid(box);
if (valid >= 0 && valid) {
offset = isl_fixed_box_get_offset(box);
size = isl_fixed_box_get_size(box);
for (i = 0; i < tile->n; ++i) {
tile->bound[i].size = isl_multi_val_get_val(size, i);
tile->bound[i].lb = isl_multi_aff_get_aff(offset, i);
}
isl_multi_aff_free(offset);
isl_multi_val_free(size);
}
isl_fixed_box_free(box);
return valid;
}
/* Internal data structure for gpu_group_references.
*
* scop represents the input scop.
* kernel_depth is the schedule depth where the kernel launch will
* be introduced, i.e., it is the depth of the band that is mapped
* to blocks.
* shared_depth is the schedule depth at which the copying to/from
* shared memory is computed. The copy operation may then
* later be hoisted to a higher level.
* thread_depth is the schedule depth where the thread mark is located,
* i.e., it is the depth of the band that is mapped to threads and also
* the schedule depth at which the copying to/from private memory
* is computed. The copy operation may then later be hoisted to
* a higher level.
* n_thread is the number of schedule dimensions in the band that
* is mapped to threads.
* privatization lives in the range of thread_sched (i.e., it is
* of dimension thread_depth + n_thread) and encodes the mapping
* to thread identifiers (as parameters).
* host_sched contains the kernel_depth dimensions of the host schedule.
* shared_sched contains the first shared_depth dimensions of the
* kernel schedule.
* copy_sched contains the first thread_depth dimensions of the
* kernel schedule.
* thread_sched contains the first (thread_depth + n_thread) dimensions
* of the kernel schedule.
* full_sched is a union_map representation of the entire kernel schedule.
* The schedules are all formulated in terms of the original statement
* instances, i.e., those that appear in the domains of the access
* relations.
*/
struct gpu_group_data {
struct ppcg_scop *scop;
int kernel_depth;
int shared_depth;
int thread_depth;
int n_thread;
isl_set *privatization;
isl_union_map *host_sched;
isl_union_map *shared_sched;
isl_union_map *copy_sched;
isl_union_map *thread_sched;
isl_union_map *full_sched;
};
/* Construct a map from domain_space to domain_space that increments
* the dimension at position "pos" and leaves all other dimensions
* constant.
*/
static __isl_give isl_map *next(__isl_take isl_space *domain_space, int pos)
{
isl_space *space;
isl_aff *aff;
isl_multi_aff *next;
space = isl_space_map_from_set(domain_space);
next = isl_multi_aff_identity(space);
aff = isl_multi_aff_get_aff(next, pos);
aff = isl_aff_add_constant_si(aff, 1);
next = isl_multi_aff_set_aff(next, pos, aff);
return isl_map_from_multi_aff(next);
}
/* Check if the given access is coalesced (or if there is no point
* in trying to coalesce the access by mapping the array to shared memory).
* That is, check whether incrementing the dimension that will get
* wrapped over the last thread index results in incrementing
* the last array index.
*
* If no two consecutive array elements are ever accessed by "access",
* then mapping the corresponding array to shared memory will not
* improve coalescing. In fact, the copying will likely be performed
* by a single thread. Consider the access as coalesced such that
* the caller will not try and map the array to shared memory just
* to improve coalescing.
*
* This function is only called for access relations without reuse and
* kernels with at least one thread identifier.
*/
static int access_is_coalesced(struct gpu_group_data *data,
__isl_keep isl_union_map *access)
{
int dim;
isl_space *space;
isl_set *accessed;
isl_map *access_map;
isl_map *next_thread_x;
isl_map *next_element;
isl_map *map;
int coalesced, empty;
access = isl_union_map_copy(access);
access = isl_union_map_apply_domain(access,
isl_union_map_copy(data->full_sched));
access_map = isl_map_from_union_map(access);
space = isl_map_get_space(access_map);
space = isl_space_range(space);
dim = isl_space_dim(space, isl_dim_set);
if (dim == 0)
next_element = isl_map_empty(isl_space_map_from_set(space));
else
next_element = next(space, dim - 1);
accessed = isl_map_range(isl_map_copy(access_map));
map = isl_map_copy(next_element);
map = isl_map_intersect_domain(map, isl_set_copy(accessed));
map = isl_map_intersect_range(map, accessed);
empty = isl_map_is_empty(map);
isl_map_free(map);
if (empty < 0 || empty) {
isl_map_free(next_element);
isl_map_free(access_map);
return empty;
}
space = isl_map_get_space(access_map);
space = isl_space_domain(space);
next_thread_x = next(space, data->thread_depth + data->n_thread - 1);
map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
map = isl_map_apply_range(map, access_map);
coalesced = isl_map_is_subset(map, next_element);
isl_map_free(next_element);
isl_map_free(map);
return coalesced;
}
/* Replace the host schedule dimensions in the access relation "access"
* by parameters, so that they are treated as fixed when checking for reuse
* (within a kernel) or whether two consecutive elements are accessed
* (within a kernel).
*/
static __isl_give isl_union_map *localize_access(struct gpu_group_data *data,
__isl_take isl_union_map *access)
{
int n;
isl_space *space;
isl_set *param;
isl_union_map *umap;
isl_id_list *ids;
umap = isl_union_map_copy(data->host_sched);
space = isl_union_map_get_space(umap);
n = data->kernel_depth;
ids = ppcg_scop_generate_names(data->scop, n, "__ppcg_host_");
param = parametrization(space, n, 0, ids);
isl_id_list_free(ids);
umap = isl_union_map_intersect_range(umap,
isl_union_set_from_set(param));
access = isl_union_map_intersect_domain(access,
isl_union_map_domain(umap));
return access;
}
/* Given an access relation in terms of at least data->thread_depth initial
* dimensions of the computed schedule, check if it is bijective for
* fixed values of the first data->thread_depth dimensions.
* We perform this check by equating these dimensions to parameters.
*/
static int access_is_bijective(struct gpu_group_data *data,
__isl_keep isl_map *access)
{
int res;
int dim;
isl_set *par;
isl_space *space;
isl_id_list *ids;
access = isl_map_copy(access);
space = isl_space_params(isl_map_get_space(access));
ids = ppcg_scop_generate_names(data->scop, data->thread_depth, "s");
dim = isl_map_dim(access, isl_dim_in);
par = parametrization(space, dim, 0, ids);
isl_id_list_free(ids);
access = isl_map_intersect_domain(access, par);
res = isl_map_is_bijective(access);
isl_map_free(access);
return res;
}
/* Compute the number of outer schedule tile dimensions that affect
* the offset of "tile".
* If there is no such dimension, then return the index
* of the first kernel dimension, i.e., data->kernel_depth.
*/
static int compute_tile_depth(struct gpu_group_data *data,
struct gpu_array_tile *tile)
{
int i, j;
for (j = tile->depth - 1; j >= data->kernel_depth; --j) {
for (i = 0; i < tile->n; ++i) {
isl_aff *lb;
isl_aff *shift;
lb = tile->bound[i].lb;
if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
break;
shift = tile->bound[i].shift;
if (!shift)
continue;
if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
break;
}
if (i < tile->n)
break;
}
return ++j;
}
/* Return the lowest depth between data->kernel_depth and data->thread_depth
* at which every array element accessed through "acc" is accessed
* by a single thread. The input dimension of "acc" is
* data->thread_depth + data->n_thread, where the final data->n_thread
* dimensions are those that will be mapped to threads.
* If the values for these dimensions are uniquely determined
* by the array index and a given number of outer dimensions, then
* there is only one thread accessing that array element within those
* outer dimensions.
*
* The input space of "acc" is first split up, such that it has the form
*
* [O -> T] -> A
*
* with O the outer dimensions, T the dimensions that will be mapped to threads
* and A the array index.
*
* Then the positions of T and A are interchanged to simplify the test
* whether T uniquely depends on O and A.
* In particular, the above access relation is first combined with
*
* [O -> T] -> T
*
* to form
*
* [O -> T] -> [A -> T]
*
* from which
*
* O -> [A -> T]
*
* is extracted, which is then uncurried to
*
* [O -> A] -> T
*
* Finally, the final dimensions of O are projected out one by one
* until T is no longer uniquely determined by A and the remaining
* dimensions in O. The value returned is that of the last dimension
* that was successfully projected out.
* Note that there is no need to test whether [O -> A] -> T itself
* is single-valued as that was already tested in access_is_bijective.
*/
static int compute_accessed_by_single_thread_depth(struct gpu_group_data *data,
__isl_keep isl_map *acc)
{
int i;
isl_space *space;
isl_map *map;
isl_bool sv;
if (data->thread_depth == data->kernel_depth)
return data->thread_depth;
acc = isl_map_copy(acc);
space = isl_map_get_space(acc);
space = isl_space_params(space);
space = isl_space_set_from_params(space);
space = isl_space_add_dims(space, isl_dim_set, data->thread_depth);
space = isl_space_from_domain(space);
space = isl_space_add_dims(space, isl_dim_out, data->n_thread);
space = isl_space_wrap(space);
map = isl_set_flatten_map(isl_set_universe(space));
acc = isl_map_apply_range(map, acc);
space = isl_space_domain(isl_map_get_space(acc));
map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
acc = isl_map_range_product(acc, map);
acc = isl_map_domain_factor_domain(acc);
acc = isl_map_uncurry(acc);
for (i = data->thread_depth - 1; i >= data->kernel_depth; --i) {
acc = isl_map_project_out(acc, isl_dim_in, i, 1);
sv = isl_map_is_single_valued(acc);
if (sv < 0)
goto error;
if (!sv)
break;
}
isl_map_free(acc);
return ++i;
error:
isl_map_free(acc);
return -1;
}
/* Adjust the fields of "tile" to reflect the new input dimension "depth".
* The dimension beyond "depth" are assumed not to affect the tile,
* so they can simply be dropped.
*/
static int tile_adjust_depth(struct gpu_array_tile *tile, int depth)
{
int i;
if (tile->depth == depth)
return 0;
for (i = 0; i < tile->n; ++i) {
tile->bound[i].lb = isl_aff_drop_dims(tile->bound[i].lb,
isl_dim_in, depth, tile->depth - depth);
if (!tile->bound[i].lb)
return -1;
if (!tile->bound[i].shift)
continue;
tile->bound[i].shift = isl_aff_drop_dims(tile->bound[i].shift,
isl_dim_in, depth, tile->depth - depth);
if (!tile->bound[i].shift)
return -1;
}
tile->depth = depth;
return 0;
}
/* Determine the number of schedule dimensions that affect the offset of the
* shared or private tile "tile" and store the result in tile->depth, with
* a lower bound of data->kernel_depth.
* Also adjust the fields of the tile to only refer to the tile->depth
* outer schedule dimensions.
*/
static isl_stat tile_set_depth(struct gpu_group_data *data,
struct gpu_array_tile *tile)
{
if (tile_adjust_depth(tile, compute_tile_depth(data, tile)) < 0)
return isl_stat_error;
return isl_stat_ok;
}
/* Determine the number of schedule dimensions that affect the offset of the
* shared tile and store the minimum of the private and shared tile depth
* in group->min_depth, with a lower bound of data->kernel_depth.
* If there is no tile defined on the array reference group,
* then set group->min_depth to data->thread_depth.
*/
static int set_depth(struct gpu_group_data *data,
struct gpu_array_ref_group *group)
{
group->min_depth = data->thread_depth;
if (group->private_tile) {
if (group->private_tile->depth < group->min_depth)
group->min_depth = group->private_tile->depth;
}
if (group->shared_tile) {
if (tile_set_depth(data, group->shared_tile) < 0)
return -1;
if (group->shared_tile->depth < group->min_depth)
group->min_depth = group->shared_tile->depth;
}
return 0;
}
/* Fill up the groups array with singleton groups, i.e., one group
* per reference, initializing the array, access, write, n_ref and refs fields.
* In particular the access field is initialized to the scheduled
* access relation of the array reference.
*
* Return the number of elements initialized, i.e., the number of
* active references in the current kernel.
*/
static int populate_array_references(struct gpu_local_array_info *local,
struct gpu_array_ref_group **groups, struct gpu_group_data *data)
{
int i;
int n;
isl_ctx *ctx = isl_union_map_get_ctx(data->copy_sched);
n = 0;
for (i = 0; i < local->array->n_ref; ++i) {
isl_union_map *umap;
isl_map *map;
struct gpu_array_ref_group *group;
struct gpu_stmt_access *access = local->array->refs[i];
map = isl_map_copy(access->access);
umap = isl_union_map_from_map(map);
umap = isl_union_map_apply_domain(umap,
isl_union_map_copy(data->copy_sched));
if (isl_union_map_is_empty(umap)) {
isl_union_map_free(umap);
continue;
}
map = isl_map_from_union_map(umap);
map = isl_map_detect_equalities(map);
group = isl_calloc_type(ctx, struct gpu_array_ref_group);
if (!group) {
isl_map_free(map);
return -1;
}
group->local_array = local;
group->array = local->array;
group->access = map;
group->write = access->write;
group->exact_write = access->exact_write;
group->slice = access->n_index < local->array->n_index;
group->refs = &local->array->refs[i];
group->n_ref = 1;
groups[n++] = group;
}
return n;
}
/* If group->n_ref == 1, then group->refs was set by
* populate_array_references to point directly into
* group->array->refs and should not be freed.
* If group->n_ref > 1, then group->refs was set by join_groups
* to point to a newly allocated array.
*/
struct gpu_array_ref_group *gpu_array_ref_group_free(
struct gpu_array_ref_group *group)
{
if (!group)
return NULL;
gpu_array_tile_free(group->shared_tile);
gpu_array_tile_free(group->private_tile);
isl_map_free(group->access);
if (group->n_ref > 1)
free(group->refs);
free(group);
return NULL;
}
/* Check if the access relations of group1 and group2 overlap within
* copy_sched.
*/
static int accesses_overlap(struct gpu_array_ref_group *group1,
struct gpu_array_ref_group *group2)
{
int disjoint;
disjoint = isl_map_is_disjoint(group1->access, group2->access);
if (disjoint < 0)
return -1;
return !disjoint;
}
/* Combine the given two groups into a single group, containing
* the references of both groups.
*/
static struct gpu_array_ref_group *join_groups(
struct gpu_array_ref_group *group1,
struct gpu_array_ref_group *group2)
{
int i;
isl_ctx *ctx;
struct gpu_array_ref_group *group;
if (!group1 || !group2)
return NULL;
ctx = isl_map_get_ctx(group1->access);
group = isl_calloc_type(ctx, struct gpu_array_ref_group);
if (!group)
return NULL;
group->local_array = group1->local_array;
group->array = group1->array;
group->access = isl_map_union(isl_map_copy(group1->access),
isl_map_copy(group2->access));
group->write = group1->write || group2->write;
group->exact_write = group1->exact_write && group2->exact_write;
group->slice = group1->slice || group2->slice;
group->n_ref = group1->n_ref + group2->n_ref;
group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
group->n_ref);
if (!group->refs)
return gpu_array_ref_group_free(group);
for (i = 0; i < group1->n_ref; ++i)
group->refs[i] = group1->refs[i];
for (i = 0; i < group2->n_ref; ++i)
group->refs[group1->n_ref + i] = group2->refs[i];
return group;
}
/* Combine the given two groups into a single group and free
* the original two groups.
*/
static struct gpu_array_ref_group *join_groups_and_free(
struct gpu_array_ref_group *group1,
struct gpu_array_ref_group *group2)
{
struct gpu_array_ref_group *group;
group = join_groups(group1, group2);
gpu_array_ref_group_free(group1);
gpu_array_ref_group_free(group2);
return group;
}
/* Report that the array reference group with the given access relation
* is not mapped to shared memory in the given kernel because
* it does not exhibit any reuse and is considered to be coalesced.
*/
static void report_no_reuse_and_coalesced(struct ppcg_kernel *kernel,
__isl_keep isl_union_map *access)
{
isl_ctx *ctx;
isl_printer *p;
ctx = isl_union_map_get_ctx(access);
p = isl_printer_to_file(ctx, stdout);
p = isl_printer_print_str(p, "Array reference group ");
p = isl_printer_print_union_map(p, access);
p = isl_printer_print_str(p,
" not considered for mapping to shared memory in kernel");
p = isl_printer_print_int(p, kernel->id);
p = isl_printer_print_str(p,
" because it exhibits no reuse and is considered to be coalesced");
p = isl_printer_end_line(p);
isl_printer_free(p);
}
/* Given an access relation in terms of the data->thread_depth initial
* dimensions of the computed schedule and the thread identifiers
* (as parameters), check if the use of the corresponding private tile
* requires unrolling.
*
* If we are creating a private tile because we are forced to,
* then no unrolling is required.
* Otherwise we check if "access" is bijective and unrolling
* is required if it is not. Note that the access relation
* has already been determined to be bijective before the introduction
* of the thread identifiers and the removal of the schedule dimensions
* that are mapped to these threads. If the access relation is no longer
* bijective, then this means that more than one value of one of those
* schedule dimensions is mapped to the same thread and therefore
* unrolling is required.
*/
static int check_requires_unroll(struct gpu_group_data *data,
__isl_keep isl_map *access, int force_private)
{
int bijective;
if (force_private)
return 0;
bijective = access_is_bijective(data, access);
if (bijective < 0)
return -1;
return !bijective;
}
/* Map the domain of "access" to the outer data->shared_depth
* schedule dimensions. When data->shared_depth is equal to
* data->thread_depth, this result is already available in group->access.
*/
static __isl_give isl_map *shared_access(struct gpu_array_ref_group *group,
__isl_keep isl_union_map *access, struct gpu_group_data *data)
{
isl_union_map *shared;
if (data->shared_depth == data->thread_depth)
return isl_map_copy(group->access);
shared = isl_union_map_copy(access);
shared = isl_union_map_apply_domain(shared,
isl_union_map_copy(data->shared_sched));
return isl_map_from_union_map(shared);
}
/* Compute the private and/or shared memory tiles for the array
* reference group "group" of array "array".
* Return isl_stat_ok on success and isl_stat_error on error.
*
* If the array is a read-only scalar or if the user requested
* not to use shared or private memory, then we do not need to do anything.
*
* If any reference in the reference group accesses more than one element,
* then we would have to make sure that the layout in shared memory
* is the same as that in global memory. Since we do not handle this yet
* (and it may not even be possible), we refuse to map to private or
* shared memory in such cases.
*
* If the array group involves any may writes (that are not must writes),
* then we would have to make sure that we load the data into shared/private
* memory first in case the data is not written by the kernel
* (but still written back out to global memory).
* Since we don't have any such mechanism at the moment, we don't
* compute shared/private tiles for groups involving may writes.
*
* We only try to compute a shared memory tile if there is any reuse
* or if the access is not coalesced.
* Reuse and coalescing are checked within the given kernel.
*
* For computing a private memory tile, we also require that there is
* some reuse. Moreover, we require that the access is private
* to the thread. That is, we check that any given array element
* is only accessed by a single thread.
* We compute an access relation that maps the outer
* data->thread_depth + data->n_thread schedule dimensions.
* The latter data->n_thread will be mapped to thread identifiers.
* We actually check that those iterators that will be wrapped
* partition the array space. This check is stricter than necessary
* since several iterations may be mapped onto the same thread
* and then they could be allowed to access the same memory elements,
* but our check does not allow this situation.
*
* For private memory tiles, the number of schedule dimensions that
* affect the offset is computed and stored in tile->depth, with
* a lower bound of data->kernel_depth. If this depth is smaller
* than the minimal depth that still ensures that every element
* is accessed by a single thread, then the depth is raised
* to this minimal depth.
* The fields of the tile are then adjusted to only refer to the tile->depth
* outer schedule dimensions.
*
* We also check that the index expression only depends on parallel
* loops. That way, we can move those loops innermost and unroll them.
* Again, we use a test that is stricter than necessary.
* We actually check whether the index expression only depends
* on the iterators that are wrapped over the threads.
* These are necessarily parallel, but there may be more parallel loops.
*
* Combining the injectivity of the first test with the single-valuedness
* of the second test, we simply test for bijectivity.
*
* If the use of the private tile requires unrolling, but some
* of the other arrays are forcibly mapped to private memory,
* then we do not allow the use of this private tile since
* we cannot move the schedule dimensions that need to be unrolled down
* without performing some kind of expansion on those arrays
* that are forcibly mapped to private memory.
*
* If the array is marked force_private, then we bypass all checks
* and assume we can (and should) use registers only.
*
* If it turns out we can (or have to) use registers, we compute
* the private memory tile size using can_tile, after introducing a dependence
* on the thread indices.
*/
static isl_stat compute_group_bounds_core(struct ppcg_kernel *kernel,
struct gpu_array_ref_group *group, struct gpu_group_data *data)
{
isl_ctx *ctx = isl_space_get_ctx(group->array->space);
isl_union_map *access, *local;
int n_index = group->array->n_index;
int no_reuse, coalesced;
isl_map *acc;
int force_private = group->local_array->force_private;
int use_shared = !force_private && kernel->options->use_shared_memory &&
data->n_thread > 0;
int use_private = force_private || kernel->options->use_private_memory;
isl_stat r = isl_stat_ok;
isl_bool ok;
int requires_unroll;
int unique_depth;
if (!use_shared && !use_private)
return isl_stat_ok;
if (gpu_array_is_read_only_scalar(group->array))
return isl_stat_ok;
if (!force_private && !group->exact_write)
return isl_stat_ok;
if (group->slice)
return isl_stat_ok;
access = gpu_array_ref_group_access_relation(group, 1, 1);
local = localize_access(data, isl_union_map_copy(access));
no_reuse = isl_union_map_is_injective(local);
if (no_reuse < 0)
r = isl_stat_error;
if (use_shared && no_reuse)
coalesced = access_is_coalesced(data, local);
isl_union_map_free(local);
if (r >= 0 && kernel->options->debug->verbose &&
use_shared && no_reuse && coalesced)
report_no_reuse_and_coalesced(kernel, access);
if (use_shared && (!no_reuse || !coalesced)) {
group->shared_tile = gpu_array_tile_create(ctx,
group->array->n_index);
acc = shared_access(group, access, data);
ok = can_tile(acc, group->shared_tile);
if (ok < 0)
r = isl_stat_error;
else if (!ok)
group->shared_tile =
gpu_array_tile_free(group->shared_tile);
isl_map_free(acc);
}
if (r < 0 || (!force_private && (!use_private || no_reuse))) {
isl_union_map_free(access);
return r;
}
access = isl_union_map_apply_domain(access,
isl_union_map_copy(data->thread_sched));
acc = isl_map_from_union_map(access);
if (!force_private && !access_is_bijective(data, acc)) {
isl_map_free(acc);
return isl_stat_ok;
}
unique_depth = compute_accessed_by_single_thread_depth(data, acc);
acc = isl_map_intersect_domain(acc, isl_set_copy(data->privatization));
acc = isl_map_project_out(acc, isl_dim_in, data->thread_depth,
data->n_thread);
requires_unroll = check_requires_unroll(data, acc, force_private);
if (unique_depth < 0 || requires_unroll < 0 ||
(requires_unroll && kernel->any_force_private)) {
isl_map_free(acc);
return requires_unroll < 0 ? isl_stat_error : isl_stat_ok;
}
group->private_tile = gpu_array_tile_create(ctx, n_index);
group->private_tile->requires_unroll = requires_unroll;
ok = can_tile(acc, group->private_tile);
if (ok >= 0 && !ok)
group->private_tile = gpu_array_tile_free(group->private_tile);
isl_map_free(acc);
if (ok < 0)
return isl_stat_error;
if (group->private_tile) {
struct gpu_array_tile *tile = group->private_tile;
int tile_depth = compute_tile_depth(data, tile);
if (tile_depth < unique_depth)
tile_depth = unique_depth;
if (tile_adjust_depth(tile, tile_depth) < 0)
return isl_stat_error;
}
if (force_private && !group->private_tile)
isl_die(ctx, isl_error_internal,
"unable to map array reference group to registers",
return isl_stat_error);
return isl_stat_ok;
}
/* Compute the private and/or shared memory tiles for the array
* reference group "group" of array "array" and set the tile depth.
* Return 0 on success and -1 on error.
*/
static int compute_group_bounds(struct ppcg_kernel *kernel,
struct gpu_array_ref_group *group, struct gpu_group_data *data)
{
if (!group)
return -1;
if (compute_group_bounds_core(kernel, group, data) < 0)
return -1;
if (set_depth(data, group) < 0)
return -1;
return 0;
}
/* If two groups have overlapping access relations (as determined by
* the "overlap" function) and if one of them involves a write,
* then merge the two groups into one.
* If "compute_bounds" is set, then call compute_group_bounds
* on the merged groups.
* If any group is merged into the current group, then its access
* relation may have changed or it may have been turned into a write.
* The combined group might therefore overlap with groups that
* the original group did not overlap with. The groups therefore
* need to be checked again.
*
* Return the updated number of groups.
* Return -1 on error.
*/
static int group_writes(struct ppcg_kernel *kernel,
int n, struct gpu_array_ref_group **groups,
int (*overlap)(struct gpu_array_ref_group *group1,
struct gpu_array_ref_group *group2), int compute_bounds,
struct gpu_group_data *data)
{
int i, j;
int any_merge;
for (i = 0; i < n; i += !any_merge) {
any_merge = 0;
for (j = n - 1; j > i; --j) {
if (!groups[i]->write && !groups[j]->write)
continue;
if (!overlap(groups[i], groups[j]))
continue;
any_merge = 1;
groups[i] = join_groups_and_free(groups[i], groups[j]);
if (j != n - 1)
groups[j] = groups[n - 1];
groups[n - 1] = NULL;
n--;
if (!groups[i])
return -1;
if (compute_bounds &&
compute_group_bounds(kernel, groups[i], data) < 0)
return -1;
}
}
return n;
}
/* If two groups have overlapping access relations (within the innermost
* loop) and if one of them involves a write, then merge the two groups
* into one.
*
* Return the updated number of groups.
*/
static int group_overlapping_writes(struct ppcg_kernel *kernel,
int n, struct gpu_array_ref_group **groups,
struct gpu_group_data *data)
{
return group_writes(kernel, n, groups, &accesses_overlap, 0, data);
}
/* Check if the access relations of group1 and group2 overlap within
* the outermost min(group1->min_depth, group2->min_depth) loops.
*/
static int depth_accesses_overlap(struct gpu_array_ref_group *group1,
struct gpu_array_ref_group *group2)
{
int depth;
int dim;
int empty;
isl_map *map_i, *map_j, *map;
depth = group1->min_depth;
if (group2->min_depth < depth)
depth = group2->min_depth;
map_i = isl_map_copy(group1->access);
dim = isl_map_dim(map_i, isl_dim_in);
map_i = isl_map_eliminate(map_i, isl_dim_in, depth, dim - depth);
map_j = isl_map_copy(group2->access);
map_j = isl_map_eliminate(map_j, isl_dim_in, depth, dim - depth);
map = isl_map_intersect(map_i, map_j);
empty = isl_map_is_empty(map);
isl_map_free(map);
return !empty;
}
/* If two groups have overlapping access relations (within the outer
* depth loops) and if one of them involves a write,
* then merge the two groups into one.
*
* Return the updated number of groups.
*/
static int group_depth_overlapping_writes(struct ppcg_kernel *kernel,
int n, struct gpu_array_ref_group **groups, struct gpu_group_data *data)
{
return group_writes(kernel, n, groups, &depth_accesses_overlap, 1,
data);
}
/* Is the size of the tile specified by "tile" smaller than the sum of
* the sizes of the tiles specified by "tile1" and "tile2"?
*/
static int smaller_tile(struct gpu_array_tile *tile,
struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
{
int smaller;
isl_val *size, *size1, *size2;
size = gpu_array_tile_size(tile);
size1 = gpu_array_tile_size(tile1);
size2 = gpu_array_tile_size(tile2);
size = isl_val_sub(size, size1);
size = isl_val_sub(size, size2);
smaller = isl_val_is_neg(size);
isl_val_free(size);
return smaller;
}
/* Given an initial grouping of array references and shared memory tiles
* for each group that allows for a shared memory tile, merge two groups
* if both have a shared memory tile, the merged group also has
* a shared memory tile and the size of the tile for the merge group
* is smaller than the sum of the tile sizes of the individual groups.
* If any group is merged into the current group, then it may become
* profitable to combine it with groups that were considered before
* the merge. The groups are therefore checked again after a merge.
*
* If merging two groups decreases the depth of the tile of
* one or both of the two groups, then we need to check for overlapping
* writes again.
*
* Return the number of groups after merging.
* Return -1 on error.
*/
static int group_common_shared_memory_tile(struct ppcg_kernel *kernel,
struct gpu_array_info *array, int n,
struct gpu_array_ref_group **groups, struct gpu_group_data *data)
{
int i, j;
int recompute_overlap = 0;
int any_merge;
for (i = 0; i < n; i += !any_merge) {
any_merge = 0;
if (!groups[i]->shared_tile)
continue;
for (j = n - 1; j > i; --j) {
struct gpu_array_ref_group *group;
if (!groups[j]->shared_tile)
continue;
if (!depth_accesses_overlap(groups[i], groups[j]))
continue;
group = join_groups(groups[i], groups[j]);
if (compute_group_bounds(kernel, group, data) < 0) {
gpu_array_ref_group_free(group);
return -1;
}
if (!group->shared_tile ||
!smaller_tile(group->shared_tile,
groups[i]->shared_tile,
groups[j]->shared_tile)) {
gpu_array_ref_group_free(group);
continue;
}
any_merge = 1;
if (group->min_depth < groups[i]->min_depth ||
group->min_depth < groups[j]->min_depth)
recompute_overlap = 1;
gpu_array_ref_group_free(groups[i]);
gpu_array_ref_group_free(groups[j]);
groups[i] = group;
if (j != n - 1)
groups[j] = groups[n - 1];
n--;
}
}
if (recompute_overlap)
n = group_depth_overlapping_writes(kernel, n, groups, data);
return n;
}
/* Set array->n_group and array->groups to n and groups.
*
* Additionally, set the "nr" field of each group.
*/
static void set_array_groups(struct gpu_local_array_info *array,
int n, struct gpu_array_ref_group **groups)
{
int i;
array->n_group = n;
array->groups = groups;
for (i = 0; i < n; ++i)
groups[i]->nr = i;
}
/* Combine all groups in "groups" into a single group and return
* the new number of groups (1 or 0 if there were no groups to start with).
*/
static int join_all_groups(int n, struct gpu_array_ref_group **groups)
{
int i;
for (i = n - 1; i > 0; --i) {
groups[0] = join_groups_and_free(groups[0], groups[i]);
groups[i] = NULL;
n--;
}
return n;
}
/* Group array references that should be considered together when
* deciding whether to access them from private, shared or global memory.
* Return -1 on error.
*
* In particular, if two array references overlap and if one of them
* is a write, then the two references are grouped together.
* We first perform an initial grouping based only on the access relation.
* After computing shared and private memory tiles, we check for
* overlapping writes again, but this time taking into account
* the depth of the effective tile.
*
* Furthermore, if two groups admit a shared memory tile and if the
* combination of the two also admits a shared memory tile, we merge
* the two groups.
*
* If the array contains structures, then we compute a single
* reference group without trying to find any tiles
* since we do not map such arrays to private or shared
* memory. The only exception is when those arrays of structures
* are required to be mapped to private memory.
*/
static int group_array_references(struct ppcg_kernel *kernel,
struct gpu_local_array_info *local, struct gpu_group_data *data)
{
int i;
int n;
isl_ctx *ctx = isl_union_map_get_ctx(data->shared_sched);
struct gpu_array_ref_group **groups;
groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
local->array->n_ref);
if (!groups)
return -1;
n = populate_array_references(local, groups, data);
if (local->array->has_compound_element && !local->force_private) {
n = join_all_groups(n, groups);
set_array_groups(local, n, groups);
return 0;
}
n = group_overlapping_writes(kernel, n, groups, data);
for (i = 0; i < n; ++i)
if (compute_group_bounds(kernel, groups[i], data) < 0)
n = -1;
n = group_depth_overlapping_writes(kernel, n, groups, data);
n = group_common_shared_memory_tile(kernel, local->array,
n, groups, data);
set_array_groups(local, n, groups);
if (n >= 0)
return 0;
for (i = 0; i < local->array->n_ref; ++i)
gpu_array_ref_group_free(groups[i]);
return -1;
}
/* For each array in the input program that can be mapped to private memory,
* check if there are any order dependences active inside the current kernel,
* within the same iteration of the host schedule, i.e., the prefix
* schedule at "node".
* If so, mark the array as force_private so that its reference groups will be
* mapped to a registers.
*
* Note that the arrays that cannot be mapped to private memory have
* had their order dependences added to prog->array_order and
* subsequently to the coincidence constraints.
*/
static void check_can_be_private_live_ranges(struct ppcg_kernel *kernel,
__isl_keep isl_schedule_node *node)
{
int i;
isl_union_set *domain;
isl_multi_union_pw_aff *prefix;
isl_union_pw_multi_aff *contraction;
if (!kernel->options->live_range_reordering)
return;
kernel->any_force_private = 0;
prefix = isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
prefix = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix,
contraction);
domain = isl_union_set_copy(kernel->expanded_domain);
domain = isl_union_set_universe(domain);
for (i = 0; i < kernel->n_array; ++i) {
struct gpu_local_array_info *local = &kernel->array[i];
isl_union_map *order;
local->force_private = 0;
if (!gpu_array_can_be_private(local->array))
continue;
order = isl_union_map_copy(local->array->dep_order);
order = isl_union_map_intersect_domain(order,
isl_union_set_copy(domain));
order = isl_union_map_intersect_range(order,
isl_union_set_copy(domain));
order = isl_union_map_eq_at_multi_union_pw_aff(order,
isl_multi_union_pw_aff_copy(prefix));
if (!isl_union_map_is_empty(order)) {
local->force_private = 1;
kernel->any_force_private = 1;
}
isl_union_map_free(order);
}
isl_multi_union_pw_aff_free(prefix);
isl_union_set_free(domain);
}
/* Expand the domain of the schedule "s" by plugging in
* the contraction "contraction" and return the result.
*/
static __isl_give isl_union_map *expand(__isl_take isl_union_map *s,
__isl_keep isl_union_pw_multi_aff *contraction)
{
contraction = isl_union_pw_multi_aff_copy(contraction);
s = isl_union_map_preimage_domain_union_pw_multi_aff(s, contraction);
return s;
}
/* Create a set of dimension data->thread_depth + data->n_thread
* that equates the residue of the final data->n_thread dimensions
* modulo the kernel->block_dim sizes to the thread identifiers.
* Store the computed set in data->privatization.
*
* The construction starts with the space of kernel->thread_filter,
* which is known to reference all thread identifiers.
*/
static void compute_privatization(struct gpu_group_data *data,
struct ppcg_kernel *kernel)
{
int i;
isl_ctx *ctx;
isl_space *space;
isl_local_space *ls;
isl_set *set;
ctx = isl_union_map_get_ctx(data->shared_sched);
space = isl_union_set_get_space(kernel->thread_filter);
space = isl_space_set_from_params(space);
space = isl_space_add_dims(space, isl_dim_set,
data->thread_depth + data->n_thread);
set = isl_set_universe(space);
space = isl_set_get_space(set);
ls = isl_local_space_from_space(space);
for (i = 0; i < data->n_thread; ++i) {
isl_aff *aff, *aff2;
isl_constraint *c;
isl_val *v;
isl_id *id;
int pos;
if (!set)
break;
aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
isl_dim_set, data->thread_depth + i);
v = isl_val_int_from_si(ctx, kernel->block_dim[i]);
aff = isl_aff_mod_val(aff, v);
id = isl_id_list_get_id(kernel->thread_ids, i);
pos = isl_set_find_dim_by_id(set, isl_dim_param, id);
isl_id_free(id);
aff2 = isl_aff_var_on_domain(isl_local_space_copy(ls),
isl_dim_param, pos);
aff = isl_aff_sub(aff, aff2);
c = isl_equality_from_aff(aff);
set = isl_set_add_constraint(set, c);
}
isl_local_space_free(ls);
data->privatization = set;
}
/* Return the prefix schedule at "node" as a relation
* between domain elements and schedule dimensions after detecting
* equalities in this relation.
*/
static __isl_give isl_union_map *prefix_with_equalities(
__isl_keep isl_schedule_node *node)
{
isl_union_map *schedule;
schedule = isl_schedule_node_get_prefix_schedule_relation(node);
schedule = isl_union_map_detect_equalities(schedule);
return schedule;
}
/* Group references of all arrays in "kernel".
* "node" points to the kernel mark.
* The mapping to shared memory in computed at the "shared" mark.
*
* We first extract all required schedule information into
* a gpu_group_data structure and then consider each array
* in turn.
*/
int gpu_group_references(struct ppcg_kernel *kernel,
__isl_keep isl_schedule_node *node)
{
int i;
int r = 0;
isl_union_pw_multi_aff *contraction;
struct gpu_group_data data;
check_can_be_private_live_ranges(kernel, node);
data.scop = kernel->prog->scop;
data.kernel_depth = isl_schedule_node_get_schedule_depth(node);
data.host_sched = isl_schedule_node_get_prefix_schedule_relation(node);
node = isl_schedule_node_copy(node);
node = gpu_tree_move_down_to_shared(node, kernel->core);
data.shared_depth = isl_schedule_node_get_schedule_depth(node);
data.shared_sched = prefix_with_equalities(node);
node = gpu_tree_move_down_to_thread(node, kernel->core);
node = isl_schedule_node_child(node, 0);
data.thread_depth = isl_schedule_node_get_schedule_depth(node);
data.n_thread = isl_schedule_node_band_n_member(node);
if (data.thread_depth == data.shared_depth)
data.copy_sched = isl_union_map_copy(data.shared_sched);
else
data.copy_sched = prefix_with_equalities(node);
data.thread_sched = isl_union_map_copy(data.copy_sched);
data.thread_sched = isl_union_map_flat_range_product(data.thread_sched,
isl_schedule_node_band_get_partial_schedule_union_map(node));
data.thread_sched = isl_union_map_detect_equalities(data.thread_sched);
contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
data.host_sched = expand(data.host_sched, contraction);
data.shared_sched = expand(data.shared_sched, contraction);
if (data.thread_depth == data.shared_depth) {
isl_union_map_free(data.copy_sched);
data.copy_sched = isl_union_map_copy(data.shared_sched);
} else {
data.copy_sched = expand(data.copy_sched, contraction);
}
data.thread_sched = expand(data.thread_sched, contraction);
isl_union_pw_multi_aff_free(contraction);
node = isl_schedule_node_child(node, 0);
data.full_sched = isl_union_map_copy(data.thread_sched);
data.full_sched = isl_union_map_flat_range_product(data.full_sched,
isl_schedule_node_get_subtree_schedule_union_map(node));
isl_schedule_node_free(node);
compute_privatization(&data, kernel);
for (i = 0; i < kernel->n_array; ++i) {
r = group_array_references(kernel, &kernel->array[i], &data);
if (r < 0)
break;
}
isl_union_map_free(data.host_sched);
isl_union_map_free(data.shared_sched);
isl_union_map_free(data.copy_sched);
isl_union_map_free(data.thread_sched);
isl_union_map_free(data.full_sched);
isl_set_free(data.privatization);
return r;
}
/* Given a description of an array tile "tile" and the "space"
*
* { D -> A }
*
* where D represents the first tile->depth schedule dimensions
* and A represents the array, construct an isl_multi_aff
*
* { [D[i] -> A[a]] -> A'[a'] }
*
* with A' a scaled down copy of A according to the shifts and strides
* in "tile". In particular,
*
* a' = (a + shift(i))/stride
*
* "insert_array" represents
*
* { [D -> A] -> D }
*
* and is used to insert A into the domain of functions that only
* reference D.
*/
static __isl_give isl_multi_aff *strided_tile(
struct gpu_array_tile *tile, __isl_keep isl_space *space,
__isl_keep isl_multi_aff *insert_array)
{
int i;
isl_ctx *ctx;
isl_multi_aff *shift;
isl_multi_val *stride;
isl_space *space2;
isl_local_space *ls;
isl_multi_aff *tiling;
ctx = isl_space_get_ctx(space);
space2 = isl_space_domain(isl_space_copy(space));
ls = isl_local_space_from_space(space2);
space2 = isl_space_range(isl_space_copy(space));
stride = isl_multi_val_zero(space2);
shift = isl_multi_aff_zero(isl_space_copy(space));
for (i = 0; i < tile->n; ++i) {
struct gpu_array_bound *bound = &tile->bound[i];
isl_val *stride_i;
isl_aff *shift_i;
stride_i = isl_val_copy(bound->stride);
shift_i = isl_aff_copy(bound->shift);
stride = isl_multi_val_set_val(stride, i, stride_i);
shift = isl_multi_aff_set_aff(shift, i, shift_i);
}
isl_local_space_free(ls);
shift = isl_multi_aff_pullback_multi_aff(shift,
isl_multi_aff_copy(insert_array));
tiling = isl_multi_aff_range_map(isl_space_copy(space));
tiling = isl_multi_aff_add(tiling, shift);
tiling = isl_multi_aff_scale_down_multi_val(tiling, stride);
return tiling;
}
/* Compute a tiling for the array reference group "group".
*
* The tiling is of the form
*
* { [D[i] -> A[a]] -> T[t] }
*
* where D represents the first tile->depth schedule dimensions,
* A represents the global array and T represents the shared or
* private memory tile. The name of T is the name of the local
* array.
*
* If there is any stride in the accesses, then the mapping is
*
* t = (a + shift(i))/stride - lb(i)
*
* otherwise, it is simply
*
* t = a - lb(i)
*/
void gpu_array_ref_group_compute_tiling(struct gpu_array_ref_group *group)
{
int i;
struct gpu_array_tile *tile;
isl_space *space;
isl_multi_aff *tiling, *lb, *insert_array;
isl_printer *p;
char *local_name;
tile = gpu_array_ref_group_tile(group);
if (!tile)
return;
space = isl_map_get_space(group->access);
space = isl_space_from_range(isl_space_range(space));
space = isl_space_add_dims(space, isl_dim_in, tile->depth);
insert_array = isl_multi_aff_domain_map(isl_space_copy(space));
for (i = 0; i < tile->n; ++i)
if (tile->bound[i].shift)
break;
if (i < tile->n)
tiling = strided_tile(tile, space, insert_array);
else
tiling = isl_multi_aff_range_map(isl_space_copy(space));
lb = isl_multi_aff_zero(space);
for (i = 0; i < tile->n; ++i) {
isl_aff *lb_i = isl_aff_copy(tile->bound[i].lb);
lb = isl_multi_aff_set_aff(lb, i, lb_i);
}
lb = isl_multi_aff_pullback_multi_aff(lb, insert_array);
tiling = isl_multi_aff_sub(tiling, lb);
p = isl_printer_to_str(isl_multi_aff_get_ctx(tiling));
p = gpu_array_ref_group_print_name(group, p);
local_name = isl_printer_get_str(p);
isl_printer_free(p);
tiling = isl_multi_aff_set_tuple_name(tiling, isl_dim_out, local_name);
free(local_name);
tile->tiling = tiling;
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化