代码拉取完成,页面将自动刷新
同步操作将从 Ascend/MindSpeed-MM 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
"""Pretrain LLaVA."""
from copy import deepcopy
import dataclasses
import torch
import torch.nn.functional as F
import mindspeed.megatron_adaptor
from megatron.core import mpu
from megatron.core.enums import ModelType
from megatron.core.transformer import TransformerConfig
from megatron.training import get_args, print_rank_0, get_timers
from megatron.training.utils import average_losses_across_data_parallel_group
from mindspeed_mm.configs.config import mm_extra_args_provider
from mindspeed_mm.models.vl_model import VLModel
from mindspeed_mm.training import pretrain
from mindspeed_mm.configs.config import MMConfig
from mindspeed_mm.data import build_mm_dataloader, build_mm_dataset
from mindspeed_mm.utils.transformer_model_config import get_model_config
from mindspeed_mm.models.common.module_spec.llava_layer_spec import get_layer_spec, get_mlp_module_spec
def model_provider(pre_process=True, post_process=True):
"""Builds the model."""
args = get_args()
vlm_config = deepcopy(args.mm.model)
print_rank_0("building LLaVA model ...")
vlm_config.text_decoder = get_model_config(vlm_config.text_decoder)
vlm_config.text_decoder.language_tansformer_layer_spec = get_layer_spec(is_vit=False)
vlm_config.image_encoder.vision_encoder = get_model_config(vlm_config.image_encoder.vision_encoder)
vlm_config.image_encoder.vision_encoder.vision_transformer_layer_spec = get_layer_spec(is_vit=True)
vlm_config.image_encoder.vision_projector = get_model_config(vlm_config.image_encoder.vision_projector)
vlm_config.image_encoder.vision_projector.vision_projection_layer_spec = get_mlp_module_spec(use_te=False).submodules
vlm_config.pre_process = pre_process
vlm_config.post_process = post_process
model = VLModel(vlm_config)
model.freeze(vlm_config.text_decoder.freeze, vlm_config.image_encoder.vision_encoder.freeze, vlm_config.image_encoder.vision_projector.freeze)
return model
def get_batch(data_iterator):
"""Generate a batch."""
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
images = data["pixel_values"].to(dtype=torch.bfloat16, device=torch.cuda.current_device())
input_ids = data["input_ids"].to(device=torch.cuda.current_device())
labels = data["labels"].to(device=torch.cuda.current_device())
attention_mask = data["attention_mask"].to(device=torch.cuda.current_device())
return images, input_ids, labels, attention_mask
def loss_func(output_tensor):
"""Loss function."""
averaged_loss = average_losses_across_data_parallel_group([output_tensor])
loss = output_tensor.unsqueeze(0)
return loss, {"loss": averaged_loss[0]}
def forward_step(data_iterator, model):
"""Forward step."""
timers = get_timers()
images, input_ids, labels, attention_mask = get_batch(data_iterator)
timers("batch-generator").stop()
position_ids = None
output_tensor = model(
images,
input_ids,
position_ids,
attention_mask,
labels
)
return output_tensor, loss_func
def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Build train, valid, and test datasets."""
args = get_args()
train_dataset = build_mm_dataset(args.mm.data.dataset_param)
train_dataloader = build_mm_dataloader(
train_dataset,
args.mm.data.dataloader_param,
process_group=mpu.get_data_parallel_group(),
)
return iter(train_dataloader), None, None
if __name__ == "__main__":
train_valid_test_datasets_provider.is_distributed = True
pretrain(
train_valid_test_datasets_provider,
model_provider,
ModelType.encoder_or_decoder,
forward_step,
extra_args_provider=mm_extra_args_provider,
args_defaults={"dataloader_type": "external", "vision_pretraining": False},
)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。