加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
MN_train.prototxt 24.89 KB
一键复制 编辑 原始数据 按行查看 历史
xixiyaba 提交于 2020-01-11 19:34 . first commit
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538
name: "face_MN_train"
layer {
name: "data"
type:"Data"
top: "data"
top: "label"
data_param{
source: "/home/cy/CodeDemo/faceDetect/face_train_lmdb"
backend: LMDB
batch_size: 32
}
transform_param {
scale: 0.00390625
crop_size: 224
mirror: true
}
include: { phase: TRAIN }
}
layer {
top: "data"
top: "label"
name: "data"
type: "Data"
data_param {
source: "/home/cy/CodeDemo/faceDetect/face_test_lmdb"
backend: LMDB
batch_size: 16
}
transform_param {
mirror: false
}
include: { phase: TEST }
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 32
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv1/bn"
type: "BatchNorm"
bottom: "conv1"
top: "conv1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv1/bn_scale"
type: "Scale"
bottom: "conv1/bn"
top: "conv1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1/bn"
top: "conv1/bn"
}
#####
layer {
name: "conv2/3x3"
type: "Convolution"
bottom: "conv1/bn"
top: "conv2/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 32
pad: 1
kernel_size: 3
stride: 1
group: 32
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv2/3x3/bn"
type: "BatchNorm"
bottom: "conv2/3x3"
top: "conv2/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv2/3x3/scale"
type: "Scale"
bottom: "conv2/3x3/bn"
top: "conv2/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv2/relu1"
type: "ReLU"
bottom: "conv2/3x3/bn"
top: "conv2/3x3/bn"
}
layer {
name: "conv2/1x1"
type: "Convolution"
bottom: "conv2/3x3/bn"
top: "conv2/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv2/1x1/bn"
type: "BatchNorm"
bottom: "conv2/1x1"
top: "conv2/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv2/1x1/scale"
type: "Scale"
bottom: "conv2/1x1/bn"
top: "conv2/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv2/relu2"
type: "ReLU"
bottom: "conv2/1x1/bn"
top: "conv2/1x1/bn"
}
#####
layer {
name: "conv3/3x3"
type: "Convolution"
bottom: "conv2/1x1/bn"
top: "conv3/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
stride: 2
group: 64
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv3/3x3/bn"
type: "BatchNorm"
bottom: "conv3/3x3"
top: "conv3/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv3/3x3/scale"
type: "Scale"
bottom: "conv3/3x3/bn"
top: "conv3/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv3/relu1"
type: "ReLU"
bottom: "conv3/3x3/bn"
top: "conv3/3x3/bn"
}
layer {
name: "conv3/1x1"
type: "Convolution"
bottom: "conv3/3x3/bn"
top: "conv3/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv3/1x1/bn"
type: "BatchNorm"
bottom: "conv3/1x1"
top: "conv3/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv3/1x1/scale"
type: "Scale"
bottom: "conv3/1x1/bn"
top: "conv3/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv3/relu2"
type: "ReLU"
bottom: "conv3/1x1/bn"
top: "conv3/1x1/bn"
}
#######
layer {
name: "conv4/3x3"
type: "Convolution"
bottom: "conv3/1x1/bn"
top: "conv4/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
group: 128
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv4/3x3/bn"
type: "BatchNorm"
bottom: "conv4/3x3"
top: "conv4/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv4/3x3/scale"
type: "Scale"
bottom: "conv4/3x3/bn"
top: "conv4/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv4/relu1"
type: "ReLU"
bottom: "conv4/3x3/bn"
top: "conv4/3x3/bn"
}
layer {
name: "conv4/1x1"
type: "Convolution"
bottom: "conv4/3x3/bn"
top: "conv4/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv4/1x1/bn"
type: "BatchNorm"
bottom: "conv4/1x1"
top: "conv4/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv4/1x1/scale"
type: "Scale"
bottom: "conv4/1x1/bn"
top: "conv4/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv4/relu2"
type: "ReLU"
bottom: "conv4/1x1/bn"
top: "conv4/1x1/bn"
}
#####
layer {
name: "conv5/3x3"
type: "Convolution"
bottom: "conv4/1x1/bn"
top: "conv5/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 2
group: 128
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv5/3x3/bn"
type: "BatchNorm"
bottom: "conv5/3x3"
top: "conv5/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv5/3x3/scale"
type: "Scale"
bottom: "conv5/3x3/bn"
top: "conv5/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv5/relu1"
type: "ReLU"
bottom: "conv5/3x3/bn"
top: "conv5/3x3/bn"
}
layer {
name: "conv5/1x1"
type: "Convolution"
bottom: "conv5/3x3/bn"
top: "conv5/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv5/1x1/bn"
type: "BatchNorm"
bottom: "conv5/1x1"
top: "conv5/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv5/1x1/scale"
type: "Scale"
bottom: "conv5/1x1/bn"
top: "conv5/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv5/relu2"
type: "ReLU"
bottom: "conv5/1x1/bn"
top: "conv5/1x1/bn"
}
#####
layer {
name: "conv6/3x3"
type: "Convolution"
bottom: "conv5/1x1/bn"
top: "conv6/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
group: 256
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv6/3x3/bn"
type: "BatchNorm"
bottom: "conv6/3x3"
top: "conv6/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv6/3x3/scale"
type: "Scale"
bottom: "conv6/3x3/bn"
top: "conv6/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv6/relu1"
type: "ReLU"
bottom: "conv6/3x3/bn"
top: "conv6/3x3/bn"
}
layer {
name: "conv6/1x1"
type: "Convolution"
bottom: "conv6/3x3/bn"
top: "conv6/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv6/1x1/bn"
type: "BatchNorm"
bottom: "conv6/1x1"
top: "conv6/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv6/1x1/scale"
type: "Scale"
bottom: "conv6/1x1/bn"
top: "conv6/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv6/relu2"
type: "ReLU"
bottom: "conv6/1x1/bn"
top: "conv6/1x1/bn"
}
########
layer {
name: "conv7/3x3"
type: "Convolution"
bottom: "conv6/1x1/bn"
top: "conv7/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 2
group: 256
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv7/3x3/bn"
type: "BatchNorm"
bottom: "conv7/3x3"
top: "conv7/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv7/3x3/scale"
type: "Scale"
bottom: "conv7/3x3/bn"
top: "conv7/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv7/relu1"
type: "ReLU"
bottom: "conv7/3x3/bn"
top: "conv7/3x3/bn"
}
layer {
name: "conv7/1x1"
type: "Convolution"
bottom: "conv7/3x3/bn"
top: "conv7/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv7/1x1/bn"
type: "BatchNorm"
bottom: "conv7/1x1"
top: "conv7/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv7/1x1/scale"
type: "Scale"
bottom: "conv7/1x1/bn"
top: "conv7/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv7/relu2"
type: "ReLU"
bottom: "conv7/1x1/bn"
top: "conv7/1x1/bn"
}
#####
layer {
name: "conv8/3x3"
type: "Convolution"
bottom: "conv7/1x1/bn"
top: "conv8/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
group: 512
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv8/3x3/bn"
type: "BatchNorm"
bottom: "conv8/3x3"
top: "conv8/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv8/3x3/scale"
type: "Scale"
bottom: "conv8/3x3/bn"
top: "conv8/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv8/relu1"
type: "ReLU"
bottom: "conv8/3x3/bn"
top: "conv8/3x3/bn"
}
layer {
name: "conv8/1x1"
type: "Convolution"
bottom: "conv8/3x3/bn"
top: "conv8/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv8/1x1/bn"
type: "BatchNorm"
bottom: "conv8/1x1"
top: "conv8/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv8/1x1/scale"
type: "Scale"
bottom: "conv8/1x1/bn"
top: "conv8/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv8/relu2"
type: "ReLU"
bottom: "conv8/1x1/bn"
top: "conv8/1x1/bn"
}
#####
layer {
name: "conv9/3x3"
type: "Convolution"
bottom: "conv8/1x1/bn"
top: "conv9/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
group: 512
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv9/3x3/bn"
type: "BatchNorm"
bottom: "conv9/3x3"
top: "conv9/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv9/3x3/scale"
type: "Scale"
bottom: "conv9/3x3/bn"
top: "conv9/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv9/relu1"
type: "ReLU"
bottom: "conv9/3x3/bn"
top: "conv9/3x3/bn"
}
layer {
name: "conv9/1x1"
type: "Convolution"
bottom: "conv9/3x3/bn"
top: "conv9/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv9/1x1/bn"
type: "BatchNorm"
bottom: "conv9/1x1"
top: "conv9/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv9/1x1/scale"
type: "Scale"
bottom: "conv9/1x1/bn"
top: "conv9/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv9/relu2"
type: "ReLU"
bottom: "conv9/1x1/bn"
top: "conv9/1x1/bn"
}
#####
layer {
name: "conv10/3x3"
type: "Convolution"
bottom: "conv9/1x1/bn"
top: "conv10/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
group: 512
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv10/3x3/bn"
type: "BatchNorm"
bottom: "conv10/3x3"
top: "conv10/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv10/3x3/scale"
type: "Scale"
bottom: "conv10/3x3/bn"
top: "conv10/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv10/relu1"
type: "ReLU"
bottom: "conv10/3x3/bn"
top: "conv10/3x3/bn"
}
layer {
name: "conv10/1x1"
type: "Convolution"
bottom: "conv10/3x3/bn"
top: "conv10/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv10/1x1/bn"
type: "BatchNorm"
bottom: "conv10/1x1"
top: "conv10/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv10/1x1/scale"
type: "Scale"
bottom: "conv10/1x1/bn"
top: "conv10/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv10/relu2"
type: "ReLU"
bottom: "conv10/1x1/bn"
top: "conv10/1x1/bn"
}
#####
layer {
name: "conv11/3x3"
type: "Convolution"
bottom: "conv10/1x1/bn"
top: "conv11/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
group: 512
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv11/3x3/bn"
type: "BatchNorm"
bottom: "conv11/3x3"
top: "conv11/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv11/3x3/scale"
type: "Scale"
bottom: "conv11/3x3/bn"
top: "conv11/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv11/relu1"
type: "ReLU"
bottom: "conv11/3x3/bn"
top: "conv11/3x3/bn"
}
layer {
name: "conv11/1x1"
type: "Convolution"
bottom: "conv11/3x3/bn"
top: "conv11/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv11/1x1/bn"
type: "BatchNorm"
bottom: "conv11/1x1"
top: "conv11/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv11/1x1/scale"
type: "Scale"
bottom: "conv11/1x1/bn"
top: "conv11/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv11/relu2"
type: "ReLU"
bottom: "conv11/1x1/bn"
top: "conv11/1x1/bn"
}
#####
layer {
name: "conv12/3x3"
type: "Convolution"
bottom: "conv11/1x1/bn"
top: "conv12/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
group: 512
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv12/3x3/bn"
type: "BatchNorm"
bottom: "conv12/3x3"
top: "conv12/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv12/3x3/scale"
type: "Scale"
bottom: "conv12/3x3/bn"
top: "conv12/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv12/relu1"
type: "ReLU"
bottom: "conv12/3x3/bn"
top: "conv12/3x3/bn"
}
layer {
name: "conv12/1x1"
type: "Convolution"
bottom: "conv12/3x3/bn"
top: "conv12/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv12/1x1/bn"
type: "BatchNorm"
bottom: "conv12/1x1"
top: "conv12/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv12/1x1/scale"
type: "Scale"
bottom: "conv12/1x1/bn"
top: "conv12/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv12/relu2"
type: "ReLU"
bottom: "conv12/1x1/bn"
top: "conv12/1x1/bn"
}
#####
layer {
name: "conv13/3x3"
type: "Convolution"
bottom: "conv12/1x1/bn"
top: "conv13/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 2
group: 512
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv13/3x3/bn"
type: "BatchNorm"
bottom: "conv13/3x3"
top: "conv13/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv13/3x3/scale"
type: "Scale"
bottom: "conv13/3x3/bn"
top: "conv13/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv13/relu1"
type: "ReLU"
bottom: "conv13/3x3/bn"
top: "conv13/3x3/bn"
}
layer {
name: "conv13/1x1"
type: "Convolution"
bottom: "conv13/3x3/bn"
top: "conv13/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv13/1x1/bn"
type: "BatchNorm"
bottom: "conv13/1x1"
top: "conv13/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv13/1x1/scale"
type: "Scale"
bottom: "conv13/1x1/bn"
top: "conv13/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv13/relu2"
type: "ReLU"
bottom: "conv13/1x1/bn"
top: "conv13/1x1/bn"
}
#####
layer {
name: "conv14/3x3"
type: "Convolution"
bottom: "conv13/1x1/bn"
top: "conv14/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
pad: 1
kernel_size: 3
stride: 1
group: 1024
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv14/3x3/bn"
type: "BatchNorm"
bottom: "conv14/3x3"
top: "conv14/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv14/3x3/scale"
type: "Scale"
bottom: "conv14/3x3/bn"
top: "conv14/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv14/relu1"
type: "ReLU"
bottom: "conv14/3x3/bn"
top: "conv14/3x3/bn"
}
layer {
name: "conv14/1x1"
type: "Convolution"
bottom: "conv14/3x3/bn"
top: "conv14/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 2
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv14/1x1/bn"
type: "BatchNorm"
bottom: "conv14/1x1"
top: "conv14/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv14/1x1/scale"
type: "Scale"
bottom: "conv14/1x1/bn"
top: "conv14/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv14/relu2"
type: "ReLU"
bottom: "conv14/1x1/bn"
top: "conv14/1x1/bn"
}
layer {
name: "pool15"
type: "Pooling"
bottom: "conv14/1x1/bn"
top: "pool15"
pooling_param {
pool: AVE
kernel_size: 4
global_pooling: false
}
}
layer {
name: "fc1"
type: "InnerProduct"
bottom: "pool15"
top: "fc1"
param {
lr_mult: 1
decay_mult: 1
}
inner_product_param {
num_output: 2
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "softmax"
type: "Softmax"
bottom: "fc1"
top: "prob"
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "prob"
bottom: "label"
top: "accuracy"
}
layer{
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc1"
bottom: "label"
loss_weight: 1
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化