代码拉取完成,页面将自动刷新
name: "MY_MN_full_deploy"
layer {
name: "data"
type: "Input"
top: "data"
input_param { shape: { dim: 1 dim: 3 dim: 224 dim: 224 } }
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 32
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv1/bn"
type: "BatchNorm"
bottom: "conv1"
top: "conv1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv1/bn_scale"
type: "Scale"
bottom: "conv1/bn"
top: "conv1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1/bn"
top: "conv1/bn"
}
#####
layer {
name: "conv2/3x3"
type: "Convolution"
bottom: "conv1/bn"
top: "conv2/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 32
pad: 1
kernel_size: 3
stride: 1
group: 32
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv2/3x3/bn"
type: "BatchNorm"
bottom: "conv2/3x3"
top: "conv2/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv2/3x3/scale"
type: "Scale"
bottom: "conv2/3x3/bn"
top: "conv2/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv2/relu1"
type: "ReLU"
bottom: "conv2/3x3/bn"
top: "conv2/3x3/bn"
}
layer {
name: "conv2/1x1"
type: "Convolution"
bottom: "conv2/3x3/bn"
top: "conv2/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv2/1x1/bn"
type: "BatchNorm"
bottom: "conv2/1x1"
top: "conv2/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv2/1x1/scale"
type: "Scale"
bottom: "conv2/1x1/bn"
top: "conv2/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv2/relu2"
type: "ReLU"
bottom: "conv2/1x1/bn"
top: "conv2/1x1/bn"
}
#####
layer {
name: "conv3/3x3"
type: "Convolution"
bottom: "conv2/1x1/bn"
top: "conv3/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
stride: 2
group: 64
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv3/3x3/bn"
type: "BatchNorm"
bottom: "conv3/3x3"
top: "conv3/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv3/3x3/scale"
type: "Scale"
bottom: "conv3/3x3/bn"
top: "conv3/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv3/relu1"
type: "ReLU"
bottom: "conv3/3x3/bn"
top: "conv3/3x3/bn"
}
layer {
name: "conv3/1x1"
type: "Convolution"
bottom: "conv3/3x3/bn"
top: "conv3/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv3/1x1/bn"
type: "BatchNorm"
bottom: "conv3/1x1"
top: "conv3/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv3/1x1/scale"
type: "Scale"
bottom: "conv3/1x1/bn"
top: "conv3/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv3/relu2"
type: "ReLU"
bottom: "conv3/1x1/bn"
top: "conv3/1x1/bn"
}
#######
layer {
name: "conv4/3x3"
type: "Convolution"
bottom: "conv3/1x1/bn"
top: "conv4/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
group: 128
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv4/3x3/bn"
type: "BatchNorm"
bottom: "conv4/3x3"
top: "conv4/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv4/3x3/scale"
type: "Scale"
bottom: "conv4/3x3/bn"
top: "conv4/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv4/relu1"
type: "ReLU"
bottom: "conv4/3x3/bn"
top: "conv4/3x3/bn"
}
layer {
name: "conv4/1x1"
type: "Convolution"
bottom: "conv4/3x3/bn"
top: "conv4/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv4/1x1/bn"
type: "BatchNorm"
bottom: "conv4/1x1"
top: "conv4/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv4/1x1/scale"
type: "Scale"
bottom: "conv4/1x1/bn"
top: "conv4/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv4/relu2"
type: "ReLU"
bottom: "conv4/1x1/bn"
top: "conv4/1x1/bn"
}
#####
layer {
name: "conv5/3x3"
type: "Convolution"
bottom: "conv4/1x1/bn"
top: "conv5/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 2
group: 128
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv5/3x3/bn"
type: "BatchNorm"
bottom: "conv5/3x3"
top: "conv5/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv5/3x3/scale"
type: "Scale"
bottom: "conv5/3x3/bn"
top: "conv5/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv5/relu1"
type: "ReLU"
bottom: "conv5/3x3/bn"
top: "conv5/3x3/bn"
}
layer {
name: "conv5/1x1"
type: "Convolution"
bottom: "conv5/3x3/bn"
top: "conv5/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv5/1x1/bn"
type: "BatchNorm"
bottom: "conv5/1x1"
top: "conv5/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv5/1x1/scale"
type: "Scale"
bottom: "conv5/1x1/bn"
top: "conv5/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv5/relu2"
type: "ReLU"
bottom: "conv5/1x1/bn"
top: "conv5/1x1/bn"
}
#####
layer {
name: "conv6/3x3"
type: "Convolution"
bottom: "conv5/1x1/bn"
top: "conv6/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
group: 256
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv6/3x3/bn"
type: "BatchNorm"
bottom: "conv6/3x3"
top: "conv6/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv6/3x3/scale"
type: "Scale"
bottom: "conv6/3x3/bn"
top: "conv6/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv6/relu1"
type: "ReLU"
bottom: "conv6/3x3/bn"
top: "conv6/3x3/bn"
}
layer {
name: "conv6/1x1"
type: "Convolution"
bottom: "conv6/3x3/bn"
top: "conv6/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv6/1x1/bn"
type: "BatchNorm"
bottom: "conv6/1x1"
top: "conv6/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv6/1x1/scale"
type: "Scale"
bottom: "conv6/1x1/bn"
top: "conv6/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv6/relu2"
type: "ReLU"
bottom: "conv6/1x1/bn"
top: "conv6/1x1/bn"
}
########
layer {
name: "conv7/3x3"
type: "Convolution"
bottom: "conv6/1x1/bn"
top: "conv7/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 2
group: 256
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv7/3x3/bn"
type: "BatchNorm"
bottom: "conv7/3x3"
top: "conv7/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv7/3x3/scale"
type: "Scale"
bottom: "conv7/3x3/bn"
top: "conv7/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv7/relu1"
type: "ReLU"
bottom: "conv7/3x3/bn"
top: "conv7/3x3/bn"
}
layer {
name: "conv7/1x1"
type: "Convolution"
bottom: "conv7/3x3/bn"
top: "conv7/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv7/1x1/bn"
type: "BatchNorm"
bottom: "conv7/1x1"
top: "conv7/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv7/1x1/scale"
type: "Scale"
bottom: "conv7/1x1/bn"
top: "conv7/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv7/relu2"
type: "ReLU"
bottom: "conv7/1x1/bn"
top: "conv7/1x1/bn"
}
#####
layer {
name: "conv8/3x3"
type: "Convolution"
bottom: "conv7/1x1/bn"
top: "conv8/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
group: 512
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv8/3x3/bn"
type: "BatchNorm"
bottom: "conv8/3x3"
top: "conv8/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv8/3x3/scale"
type: "Scale"
bottom: "conv8/3x3/bn"
top: "conv8/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv8/relu1"
type: "ReLU"
bottom: "conv8/3x3/bn"
top: "conv8/3x3/bn"
}
layer {
name: "conv8/1x1"
type: "Convolution"
bottom: "conv8/3x3/bn"
top: "conv8/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv8/1x1/bn"
type: "BatchNorm"
bottom: "conv8/1x1"
top: "conv8/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv8/1x1/scale"
type: "Scale"
bottom: "conv8/1x1/bn"
top: "conv8/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv8/relu2"
type: "ReLU"
bottom: "conv8/1x1/bn"
top: "conv8/1x1/bn"
}
#####
layer {
name: "conv9/3x3"
type: "Convolution"
bottom: "conv8/1x1/bn"
top: "conv9/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
group: 512
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv9/3x3/bn"
type: "BatchNorm"
bottom: "conv9/3x3"
top: "conv9/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv9/3x3/scale"
type: "Scale"
bottom: "conv9/3x3/bn"
top: "conv9/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv9/relu1"
type: "ReLU"
bottom: "conv9/3x3/bn"
top: "conv9/3x3/bn"
}
layer {
name: "conv9/1x1"
type: "Convolution"
bottom: "conv9/3x3/bn"
top: "conv9/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv9/1x1/bn"
type: "BatchNorm"
bottom: "conv9/1x1"
top: "conv9/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv9/1x1/scale"
type: "Scale"
bottom: "conv9/1x1/bn"
top: "conv9/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv9/relu2"
type: "ReLU"
bottom: "conv9/1x1/bn"
top: "conv9/1x1/bn"
}
#####
layer {
name: "conv10/3x3"
type: "Convolution"
bottom: "conv9/1x1/bn"
top: "conv10/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
group: 512
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv10/3x3/bn"
type: "BatchNorm"
bottom: "conv10/3x3"
top: "conv10/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv10/3x3/scale"
type: "Scale"
bottom: "conv10/3x3/bn"
top: "conv10/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv10/relu1"
type: "ReLU"
bottom: "conv10/3x3/bn"
top: "conv10/3x3/bn"
}
layer {
name: "conv10/1x1"
type: "Convolution"
bottom: "conv10/3x3/bn"
top: "conv10/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv10/1x1/bn"
type: "BatchNorm"
bottom: "conv10/1x1"
top: "conv10/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv10/1x1/scale"
type: "Scale"
bottom: "conv10/1x1/bn"
top: "conv10/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv10/relu2"
type: "ReLU"
bottom: "conv10/1x1/bn"
top: "conv10/1x1/bn"
}
#####
layer {
name: "conv11/3x3"
type: "Convolution"
bottom: "conv10/1x1/bn"
top: "conv11/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
group: 512
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv11/3x3/bn"
type: "BatchNorm"
bottom: "conv11/3x3"
top: "conv11/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv11/3x3/scale"
type: "Scale"
bottom: "conv11/3x3/bn"
top: "conv11/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv11/relu1"
type: "ReLU"
bottom: "conv11/3x3/bn"
top: "conv11/3x3/bn"
}
layer {
name: "conv11/1x1"
type: "Convolution"
bottom: "conv11/3x3/bn"
top: "conv11/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv11/1x1/bn"
type: "BatchNorm"
bottom: "conv11/1x1"
top: "conv11/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv11/1x1/scale"
type: "Scale"
bottom: "conv11/1x1/bn"
top: "conv11/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv11/relu2"
type: "ReLU"
bottom: "conv11/1x1/bn"
top: "conv11/1x1/bn"
}
#####
layer {
name: "conv12/3x3"
type: "Convolution"
bottom: "conv11/1x1/bn"
top: "conv12/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
group: 512
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv12/3x3/bn"
type: "BatchNorm"
bottom: "conv12/3x3"
top: "conv12/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv12/3x3/scale"
type: "Scale"
bottom: "conv12/3x3/bn"
top: "conv12/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv12/relu1"
type: "ReLU"
bottom: "conv12/3x3/bn"
top: "conv12/3x3/bn"
}
layer {
name: "conv12/1x1"
type: "Convolution"
bottom: "conv12/3x3/bn"
top: "conv12/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv12/1x1/bn"
type: "BatchNorm"
bottom: "conv12/1x1"
top: "conv12/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv12/1x1/scale"
type: "Scale"
bottom: "conv12/1x1/bn"
top: "conv12/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv12/relu2"
type: "ReLU"
bottom: "conv12/1x1/bn"
top: "conv12/1x1/bn"
}
#####
layer {
name: "conv13/3x3"
type: "Convolution"
bottom: "conv12/1x1/bn"
top: "conv13/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 2
group: 512
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv13/3x3/bn"
type: "BatchNorm"
bottom: "conv13/3x3"
top: "conv13/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv13/3x3/scale"
type: "Scale"
bottom: "conv13/3x3/bn"
top: "conv13/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv13/relu1"
type: "ReLU"
bottom: "conv13/3x3/bn"
top: "conv13/3x3/bn"
}
layer {
name: "conv13/1x1"
type: "Convolution"
bottom: "conv13/3x3/bn"
top: "conv13/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv13/1x1/bn"
type: "BatchNorm"
bottom: "conv13/1x1"
top: "conv13/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv13/1x1/scale"
type: "Scale"
bottom: "conv13/1x1/bn"
top: "conv13/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv13/relu2"
type: "ReLU"
bottom: "conv13/1x1/bn"
top: "conv13/1x1/bn"
}
#####
layer {
name: "conv14/3x3"
type: "Convolution"
bottom: "conv13/1x1/bn"
top: "conv14/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
pad: 1
kernel_size: 3
stride: 1
group: 1024
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv14/3x3/bn"
type: "BatchNorm"
bottom: "conv14/3x3"
top: "conv14/3x3/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv14/3x3/scale"
type: "Scale"
bottom: "conv14/3x3/bn"
top: "conv14/3x3/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv14/relu1"
type: "ReLU"
bottom: "conv14/3x3/bn"
top: "conv14/3x3/bn"
}
layer {
name: "conv14/1x1"
type: "Convolution"
bottom: "conv14/3x3/bn"
top: "conv14/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 2
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv14/1x1/bn"
type: "BatchNorm"
bottom: "conv14/1x1"
top: "conv14/1x1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv14/1x1/scale"
type: "Scale"
bottom: "conv14/1x1/bn"
top: "conv14/1x1/bn"
scale_param {
bias_term: true
}
}
layer {
name: "conv14/relu2"
type: "ReLU"
bottom: "conv14/1x1/bn"
top: "conv14/1x1/bn"
}
layer {
name: "pool15"
type: "Pooling"
bottom: "conv14/1x1/bn"
top: "pool15"
pooling_param {
pool: AVE
kernel_size: 4
global_pooling: false
}
}
layer {
name: "fc1-conv"
type: "Convolution"
bottom: "pool15"
top: "fc1-conv"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 2
kernel_size: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "prob"
type: "Softmax"
bottom: "fc1-conv"
top: "prob"
loss_weight: 1
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。