代码拉取完成,页面将自动刷新
"""
This code uses the pytorch model to detect faces from live video or camera.
"""
import argparse
import sys
import cv2
from vision.ssd.config.fd_config import define_img_size
parser = argparse.ArgumentParser(
description='detect_video')
parser.add_argument('--net_type', default="mb_tiny_RFB_fd", type=str,
help='The network architecture ,optional:1. mb_tiny_RFB_fd (higher precision) or 2.mb_tiny_fd (faster)')
parser.add_argument('--input_size', default=480, type=int,
help='define network input size,default optional value 128/160/320/480/640/1280')
parser.add_argument('--threshold', default=0.7, type=float,
help='score threshold')
parser.add_argument('--candidate_size', default=1000, type=int,
help='nms candidate size')
parser.add_argument('--path', default="imgs", type=str,
help='imgs dir')
parser.add_argument('--test_device', default="cuda:0", type=str,
help='cuda:0 or cpu')
parser.add_argument('--video_path', default="/home/linzai/Videos/video/16_1.MP4", type=str,
help='path of video')
args = parser.parse_args()
input_img_size = args.input_size
define_img_size(input_img_size) # must put define_img_size() before 'import create_mb_tiny_fd, create_mb_tiny_fd_predictor'
from vision.ssd.mb_tiny_fd import create_mb_tiny_fd, create_mb_tiny_fd_predictor
from vision.ssd.mb_tiny_RFB_fd import create_Mb_Tiny_RFB_fd, create_Mb_Tiny_RFB_fd_predictor
from vision.utils.misc import Timer
label_path = "./models/voc-model-labels.txt"
net_type = args.net_type
cap = cv2.VideoCapture(args.video_path) # capture from video
# cap = cv2.VideoCapture(0) # capture from camera
class_names = [name.strip() for name in open(label_path).readlines()]
num_classes = len(class_names)
test_device = args.test_device
candidate_size = args.candidate_size
threshold = args.threshold
if net_type == 'mb_tiny_fd':
model_path = "models/pretrained/Mb_Tiny_FD_train_input_320.pth"
net = create_mb_tiny_fd(len(class_names), is_test=True, device=test_device)
predictor = create_mb_tiny_fd_predictor(net, candidate_size=candidate_size, device=test_device)
elif net_type == 'mb_tiny_RFB_fd':
model_path = "models/pretrained/Mb_Tiny_RFB_FD_train_input_320.pth"
# model_path = "models/pretrained/Mb_Tiny_RFB_FD_train_input_640.pth"
net = create_Mb_Tiny_RFB_fd(len(class_names), is_test=True, device=test_device)
predictor = create_Mb_Tiny_RFB_fd_predictor(net, candidate_size=candidate_size, device=test_device)
else:
print("The net type is wrong!")
sys.exit(1)
net.load(model_path)
timer = Timer()
sum = 0
while True:
ret, orig_image = cap.read()
if orig_image is None:
print("end")
break
image = cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB)
timer.start()
boxes, labels, probs = predictor.predict(image, candidate_size / 2, threshold)
interval = timer.end()
print('Time: {:.6f}s, Detect Objects: {:d}.'.format(interval, labels.size(0)))
for i in range(boxes.size(0)):
box = boxes[i, :]
label = f" {probs[i]:.2f}"
cv2.rectangle(orig_image, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 4)
# cv2.putText(orig_image, label,
# (box[0], box[1] - 10),
# cv2.FONT_HERSHEY_SIMPLEX,
# 0.5, # font scale
# (0, 0, 255),
# 2) # line type
orig_image = cv2.resize(orig_image, None, None, fx=0.8, fy=0.8)
sum += boxes.size(0)
cv2.imshow('annotated', orig_image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
print("all face num:{}".format(sum))
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。