代码拉取完成,页面将自动刷新
#ifndef MATRIX_H
#define MATRIX_H 1
#include <concepts>
#include <string>
#include <vector>
// #define DEBUG
#define CAT << '|' <<
#define LOGMESSAGE(msg) \
((std::stringstream() \
<< __DATE__ \
CAT __TIME__ \
CAT __FILE__ \
CAT __FUNCTION__ CAT __LINE__ \
CAT msg) \
.str())
// template <typename T>
// concept ElemType = std::is_floating_point_v<T> || std::is_same_v<T, std::complex<float>> || std::is_same_v<T, std::complex<double>> || std::is_same_v<T, std::complex<long double>>;
template <typename T>
concept ElemType = requires(T t1, T t2) {
{
t1 + t2
} -> std::same_as<T>;
{
t1 - t2
} -> std::same_as<T>;
{
t1* t2
} -> std::same_as<T>;
{
t1 / t2
} -> std::same_as<T>;
{
std::cout << t1
} -> std::same_as<std::ostream&>;
t1 = 0;
t1 = 1;
t1 = -1;
};
// 定义父类MatrixBase
template <ElemType T>
class MatrixBase
{
public:
using type = T;
static constexpr const type ZERO = 0;
protected:
size_t m_rows;
size_t m_cols;
std::vector<T> m_data;
public:
// 构造函数
MatrixBase(const MatrixBase& other)
{
m_rows = other.m_rows;
m_cols = other.m_cols;
m_data = other.m_data;
}
MatrixBase(const int& rows, const int& cols) : m_rows(rows), m_cols(cols)
{
if (rows > 0 && cols > 0)
m_data.resize(rows * cols);
else
throw std::invalid_argument(LOGMESSAGE("rows > 0 ? cols > 0 ?"));
}
template <typename U, size_t r, size_t c>
requires std::is_convertible_v<U, T>
MatrixBase(const U(&arr)[r][c]) : MatrixBase(r, c)
{
decltype(r) i = 0;
for (auto& line : arr)
for (auto& v : line)
m_data[i++] = v;
}
// 获取矩阵或行列式的行数和列数
constexpr size_t rows() const { return m_rows; }
constexpr size_t cols() const { return m_cols; }
// 获取、设置矩阵或行列式指定行列的值
const T& operator()(const size_t& rows, const size_t& cols) const { return m_data[rows * m_rows + cols]; }
T& operator()(const size_t& rows, const size_t& cols) { return m_data[rows * m_rows + cols]; }
// 矩阵转置
MatrixBase transpose() const
{
MatrixBase<T> ret(m_cols, m_rows);
auto& cur = *this;
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_cols; ++j)
ret(j, i) = cur(i, j);
return ret;
}
// 计算行列式的值
T value() const
{
if (m_rows != m_cols)
throw std::invalid_argument(LOGMESSAGE("it isn't a square matrix"));
auto mat = *this;
size_t i, j, cnt = 0;
for (i = 0; i < m_rows; ++i)
{
for (j = i; j < m_rows; ++j)
if (mat(j, i) != ZERO)
break;
if (j == m_rows)
continue;
if (i != j)
{
++cnt;
for (size_t k = i; k < m_cols; ++k)
{
auto t = mat(i, k);
mat(i, k) = mat(j, k);
mat(j, k) = t;
}
}
for (size_t k = i + 1; k < m_rows; ++k)
{
auto p = mat(k, i);
if (p != ZERO)
{
mat(k, i) = ZERO;
p /= mat(i, i);
for (size_t m = i + 1; m < m_cols; ++m)
mat(k, m) -= p * mat(i, m);
}
}
}
T result = cnt % 2 ? -1 : 1;
for (i = 0; i < m_rows; ++i)
{
if (mat(i, i) != ZERO)
result *= mat(i, i);
else
return 0;
}
return result;
}
};
// 定义矩阵类Matrix,继承自MatrixBase
// template <typename T>
// class Matrix : public MatrixBase<T>
// {
// public:
// // 构造函数
// Matrix(size_t rows, size_t cols) : MatrixBase<T>(rows, cols) {}
// // 矩阵加法
// Matrix<T> operator+(const Matrix<T> &other) const
// {
// this->m_cols == other.m_cols;
// this->m_rows == other.m_cols;
// // return this;
// };
// // 矩阵减法
// Matrix<T> operator-(const Matrix<T> &other) const;
// // 矩阵乘法
// Matrix<T> operator*(const Matrix<T> &other) const;
// };
// // 定义行列式类Determinant,继承自MatrixBase
template <typename T>
class Determinant : public MatrixBase<T>
{
public:
// 构造函数
Determinant(size_t n) : MatrixBase<T>(n, n) {}
template <typename U>
requires std::is_convertible_v<U, T>
Determinant(const Determinant<U>& m)
{
if (m.rows() != m.cols())
throw std::invalid_argument(LOGMESSAGE("it isn't a square matrix"));
else
{
this->m_rows = m.rows();
this->m_cols = m.cols();
auto& d = this->m_data;
for (size_t i = 0; i < this->m_rows; ++i)
for (size_t j = 0; j < this->m_cols; ++j)
d.push_back(m(i, j));
};
}
Determinant(const MatrixBase<T>& m)
{
if (m.rows() != m.cols())
throw std::invalid_argument(LOGMESSAGE("it isn't a square matrix"));
else
{
this->m_rows = m.rows();
this->m_cols = m.cols();
auto& d = this->m_data;
for (size_t i = 0; i < this->m_rows; ++i)
for (size_t j = 0; j < this->m_cols; ++j)
d.push_back(m(i, j));
}
}
template <typename U, size_t N>
requires std::is_convertible_v<U, T>
Determinant(const U(&arr)[N][N]) : MatrixBase<T>(arr)
{
}
template <typename K>
requires std::is_convertible_v<K, T>
Determinant& operator*=(const K& k)
{
for (size_t i = 0; i < this->m_cols; ++i)
this->m_data[i] *= k;
return *this;
}
// 代数余子式
Determinant cofactor(const size_t& row, const size_t& col) const
{
auto&& r = this->rows() - 1;
if (row <= r && col <= r)
{
Determinant<T> det(r);
const auto& cur = *this;
bool status1, status2;
for (size_t i = 0, status1 = false; i < r; ++i)
{
if (i == row)
status1 = true;
for (size_t j = 0, status2 = false; j < r; ++j)
{
if (j == col)
status2 = true;
det(i, j) = cur(i + status1, j + status2);
}
}
return det *= (row + col ? -1 : 1);
}
else
throw std::invalid_argument(LOGMESSAGE("row or col? too large!"));
}
};
template <typename T>
std::ostream& operator<<(std::ostream& _os_, const MatrixBase<T>& mat)
{
#include <sstream>
std::stringstream ret;
auto&& f = _os_.flags();
ret.flags(f);
ret << "{\n";
auto&& r = mat.rows();
auto&& c = mat.cols();
for (size_t i = 0; i < r; i++)
{
decltype(ret) line;
line.flags(f);
for (size_t j = 0; j < c; j++)
line << mat(i, j) << ' ';
auto&& str = line.str();
str.pop_back();
ret << str << '\n';
}
ret << '}';
return _os_ << ret.str();
}
#endif
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。