代码拉取完成,页面将自动刷新
同步操作将从 风酒/YOLO_v3_tensorflow 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# coding: utf-8
from __future__ import division, print_function
import tensorflow as tf
import numpy as np
import argparse
import cv2
import time
import setting.predict_args as pred_args
from utils.nms_utils import gpu_nms
from utils.plot_utils import plot_one_box
from utils.data_aug import letterbox_resize
from net.model import yolov3
def img_detect(input_args):
"""
图片检测
:param input_args:
:return:
"""
img_ori = cv2.imread(input_args.input_image) # opencv 打开
if input_args.use_letterbox_resize:
img, resize_ratio, dw, dh = letterbox_resize(img_ori, pred_args.new_size[0], pred_args.new_size[1])
else:
height_ori, width_ori = img_ori.shape[:2]
img = cv2.resize(img_ori, tuple(pred_args.new_size))
# img 转RGB, 转float, 归一化
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.asarray(img, np.float32)
img = img[np.newaxis, :] / 255.
sess = tf.Session()
input_data = tf.placeholder(
tf.float32, [1, pred_args.new_size[1], pred_args.new_size[0], 3], name='input_data'
)
with tf.variable_scope('yolov3'):
yolo_model = yolov3(pred_args.num_class, pred_args.anchors)
pred_feature_maps = yolo_model.forward(input_data, False)
pred_boxes, pred_confs, pred_probs = yolo_model.predict(pred_feature_maps)
pred_scores = pred_confs * pred_probs
boxes, scores, labels = gpu_nms(
pred_boxes, pred_scores, pred_args.num_class,
max_boxes=200, score_thresh=0.3, nms_thresh=0.45)
saver = tf.train.Saver()
saver.restore(sess, pred_args.weight_path)
boxes_, scores_, labels_ = sess.run([boxes, scores, labels], feed_dict={input_data: img})
# 还原坐标到原图
if input_args.use_letterbox_resize:
boxes_[:, [0, 2]] = (boxes_[:, [0, 2]] - dw) / resize_ratio
boxes_[:, [1, 3]] = (boxes_[:, [1, 3]] - dh) / resize_ratio
else:
boxes_[:, [0, 2]] *= (width_ori / float(pred_args.new_size[0]))
boxes_[:, [1, 3]] *= (height_ori / float(pred_args.new_size[1]))
print('box coords:', boxes_, '\n' + '*' * 30)
print('scores:', scores_, '\n' + '*' * 30)
print('labels:', labels_)
for i in range(len(boxes_)):
x0, y0, x1, y1 = boxes_[i]
plot_one_box(
img_ori, [x0, y0, x1, y1],
label=pred_args.classes[labels_[i]] + ', {:.2f}%'.format(scores_[i] * 100),
color=pred_args.color_table[labels_[i]]
)
cv2.imshow('Detection result', img_ori)
cv2.imwrite(pred_args.output_image, img_ori)
cv2.waitKey(0)
sess.close()
def video_detect(input_args):
vid = cv2.VideoCapture(input_args.input_video)
video_frame_cnt = int(vid.get(7))
video_width = int(vid.get(3))
video_height = int(vid.get(4))
video_fps = int(vid.get(5))
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
video_writer = cv2.VideoWriter(pred_args.output_video, fourcc, video_fps, (video_width, video_height))
with tf.Session() as sess:
input_data = tf.placeholder(tf.float32, [1, pred_args.new_size[1], pred_args.new_size[0], 3], name='input_data')
yolo_model = yolov3(pred_args.num_class, pred_args.anchors)
with tf.variable_scope('yolov3'):
pred_feature_maps = yolo_model.forward(input_data, False)
pred_boxes, pred_confs, pred_probs = yolo_model.predict(pred_feature_maps)
pred_scores = pred_confs * pred_probs
boxes, scores, labels = gpu_nms(
pred_boxes, pred_scores, pred_args.num_class,
max_boxes=200, score_thresh=0.3, nms_thresh=0.45
)
saver = tf.train.Saver()
saver.restore(sess, pred_args.weight_path)
for i in range(video_frame_cnt):
ret, img_ori = vid.read()
if input_args.use_letterbox_resize:
img, resize_ratio, dw, dh = letterbox_resize(img_ori, pred_args.new_size[0], pred_args.new_size[1])
else:
height_ori, width_ori = img_ori.shape[:2]
img = cv2.resize(img_ori, tuple(pred_args.new_size))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.asarray(img, np.float32)
img = img[np.newaxis, :] / 255.
start_time = time.time()
boxes_, scores_, labels_ = sess.run([boxes, scores, labels], feed_dict={input_data: img})
end_time = time.time()
if input_args.use_letterbox_resize:
boxes_[:, [0, 2]] = (boxes_[:, [0, 2]] - dw) / resize_ratio
boxes_[:, [1, 3]] = (boxes_[:, [1, 3]] - dh) / resize_ratio
else:
boxes_[:, [0, 2]] *= (width_ori / float(pred_args.new_size[0]))
boxes_[:, [1, 3]] *= (height_ori / float(pred_args.new_size[1]))
for i in range(len(boxes_)):
x0, y0, x1, y1 = boxes_[i]
plot_one_box(img_ori, [x0, y0, x1, y1],
label=pred_args.classes[labels_[i]] + ', {:.2f}%'.format(scores_[i] * 100),
color=pred_args.color_table[labels_[i]])
cv2.putText(
img_ori, '{:.2f}ms'.format((end_time - start_time) * 1000),
(40, 40), 0, fontScale=1, color=(0, 255, 0), thickness=2
)
cv2.imshow('Detection result', img_ori)
video_writer.write(img_ori)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
vid.release()
video_writer.release()
def main():
parser = argparse.ArgumentParser(description='YOLO V3 检测文件')
parser.add_argument('--detect_object', default=pred_args.detect_object, type=str, help='检测目标-img或video')
parser.add_argument('--input_image', default=pred_args.input_image, type=str, help='图片路径')
parser.add_argument('--input_video', default=pred_args.input_video, type=str, help='视频路径')
parser.add_argument('--use_letterbox_resize', type=lambda x: (str(x).lower() == 'true'), default=True, help='是否使用letterbox')
input_args = parser.parse_args()
# 图片检测
if input_args.detect_object == 'img':
img_origin = cv2.imread(input_args.input_image) # 原始图片
if img_origin is None:
raise Exception('未找到图片文件!')
img_detect(input_args)
# 视频检测
elif input_args.detect_object == 'video':
vid = cv2.VideoCapture(input_args.input_video)
if vid is None:
raise Exception('未找到视频文件!')
video_detect(input_args)
if __name__ == '__main__':
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。