加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
README.rst 2.55 KB
一键复制 编辑 原始数据 按行查看 历史
徐轶轩 提交于 2021-01-31 20:15 . Formal Commit

Deep Forest

github codecov python pypi

Deep Forest is a general ensemble framework that uses tree-based ensemble algorithms such as Random Forest. It is designed to have the following advantages:

  • Powerful: Better accuracy than existing tree-based ensemble methods.
  • Easy to Use: Less efforts on tunning parameters.
  • Efficient: Fast training speed and high efficiency.
  • Scalable: Capable of handling large-scale data.

For a quick start, please refer to How to Get Started. For a detailed guidance on parameter tunning, please refer to Parameters Tunning.

Installation

The package is available via PyPI using:

pip install deep-forest

Quickstart

from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

from deepforest import CascadeForestClassifier

X, y = load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
model = CascadeForestClassifier(random_state=1)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
acc = accuracy_score(y_test, y_pred) * 100
print("\nTesting Accuracy: {:.3f} %".format(acc))
>>> Testing Accuracy: 98.667 %

Resources

Reference

@inproceedings{zhou2017deep,
    Author = {Zhi-Hua Zhou and Ji Feng},
    Booktitle = {IJCAI},
    Pages = {3553-3559},
    Title = {{Deep Forest:} Towards an alternative to deep neural networks},
    Year = {2017}}
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化