加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
GRU.py 7.06 KB
一键复制 编辑 原始数据 按行查看 历史
itcast 提交于 2024-03-13 16:08 . time series init
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as dsets
from torch.autograd import Variable
from torch.nn import Parameter
from torch import Tensor
import torch.nn.functional as F
import math
from sklearn import preprocessing
import numpy as np
'''
STEP 1: LOADING DATASET
'''
train_dataset = dsets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor())
batch_size = 100
n_iters = 6000
num_epochs = n_iters / (len(train_dataset) / batch_size)
num_epochs = int(num_epochs)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
class GRUCell(nn.Module):
"""
An implementation of GRUCell.
"""
def __init__(self, input_size, hidden_size, bias=True):
super(GRUCell, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.bias = bias
self.x2h = nn.Linear(input_size, 3 * hidden_size, bias=bias)
self.h2h = nn.Linear(hidden_size, 3 * hidden_size, bias=bias)
self.reset_parameters() # 初始化模型的参数
def reset_parameters(self):
std = 1.0 / math.sqrt(self.hidden_size)
for w in self.parameters():
w.data.uniform_(-std, std)
def forward(self, x, hidden):
x = x.view(-1, x.size(1))
gate_x = self.x2h(x)
gate_h = self.h2h(hidden)
gate_x = gate_x.squeeze()
gate_h = gate_h.squeeze()
i_r, i_i, i_n = gate_x.chunk(3, 1)
h_r, h_i, h_n = gate_h.chunk(3, 1)
resetgate = F.sigmoid(i_r + h_r) # 公式1
inputgate = F.sigmoid(i_i + h_i) # 公式2
newgate = F.tanh(i_n + (resetgate * h_n)) # 公式3
hy = newgate + inputgate * (hidden - newgate) # 公式4
return hy
class GRUModel(nn.Module):
def __init__(self, input_dim, hidden_dim, layer_dim, output_dim, bias=True):
super(GRUModel, self).__init__()
# Hidden dimensions
self.hidden_dim = hidden_dim
# Number of hidden layers
self.layer_dim = layer_dim
self.gru_cell = GRUCell(input_dim, hidden_dim, layer_dim)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
# Initialize hidden state with zeros
#######################
# USE GPU FOR MODEL #
#######################
# print(x.shape,"x.shape")100, 28, 28
if torch.cuda.is_available():
h0 = Variable(torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).cuda())
else:
h0 = Variable(torch.zeros(self.layer_dim, x.size(0), self.hidden_dim))
outs = []
hn = h0[0, :, :]
for seq in range(x.size(1)):
hn = self.gru_cell(x[:, seq, :], hn)
outs.append(hn)
out = outs[-1].squeeze()
out = self.fc(out)
# out.size() --> 100, 10
return out
def GRU_model(train,test,params):
'''
:param train: 训练集
:param test: 测试集
:param params: [input_dim, hidden_dim, layer_dim, output_dim, window_size]
:return:
'''
input_dim, hidden_dim, layer_dim, output_dim, window_size = params
'''
STEP 4: INSTANTIATE MODEL CLASS
'''
model = GRUModel(input_dim, hidden_dim, layer_dim, output_dim)
# 使用GPU进行训练
if torch.cuda.is_available():
model.cuda()
'''
STEP 5: INSTANTIATE LOSS CLASS
'''
criterion = nn.CrossEntropyLoss()
'''
STEP 6: INSTANTIATE OPTIMIZER CLASS
'''
learning_rate = 0.1
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
'''
STEP 7: TRAIN THE MODEL
'''
epochs = 10 # 训练批次为100次
# Number of steps to unroll
seq_dim = 28
loss_list = []
iter = 0
for epoch in range(epochs):
for i, (images, labels) in enumerate(train):
# Load images as Variable
#######################
# USE GPU FOR MODEL #
#######################
if torch.cuda.is_available():
images = Variable(images.view(-1, seq_dim, input_dim).cuda())
labels = Variable(labels.cuda())
else:
images = Variable(images.view(-1, seq_dim, input_dim))
labels = Variable(labels)
# Clear gradients w.r.t. parameters
optimizer.zero_grad()
# Forward pass to get output/logits
# outputs.size() --> 100, 10
outputs = model(images)
# Calculate Loss: softmax --> cross entropy loss
loss = criterion(outputs, labels)
if torch.cuda.is_available():
loss.cuda()
# Getting gradients w.r.t. parameters
loss.backward()
# Updating parameters
optimizer.step()
loss_list.append(loss.item())
iter += 1
if iter % 500 == 0:
# Calculate Accuracy
correct = 0
total = 0
# Iterate through test dataset
for images, labels in test:
#######################
# USE GPU FOR MODEL #
#######################
if torch.cuda.is_available():
images = Variable(images.view(-1, seq_dim, input_dim).cuda())
else:
images = Variable(images.view(-1, seq_dim, input_dim))
# Forward pass only to get logits/output
outputs = model(images)
# Get predictions from the maximum value
_, predicted = torch.max(outputs.data, 1)
# Total number of labels
total += labels.size(0)
# Total correct predictions
#######################
# USE GPU FOR MODEL #
#######################
if torch.cuda.is_available():
correct += (predicted.cpu() == labels.cpu()).sum()
else:
correct += (predicted == labels).sum()
accuracy = 100 * correct / total
print('pre',predicted)
# Print Loss
print('Iteration: {}. Loss: {}. Accuracy: {}'.format(iter, loss.item(), accuracy))
input_dim = 28
hidden_dim = 128
layer_dim = 1 # ONLY CHANGE IS HERE FROM ONE LAYER TO TWO LAYER
output_dim = 10
window_size = 6
params = [input_dim,hidden_dim,layer_dim,output_dim,window_size]
GRU_model(train_loader,test_loader,params=params)
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化