加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
cufft_test.cu 2.61 KB
一键复制 编辑 原始数据 按行查看 历史
‘zhoudatang’ 提交于 2024-04-23 12:12 . 11
#include"iostream"
#include"cuda_runtime_api.h"
#include"device_launch_parameters.h"
#include"cufft.h"
using namespace std;
//FFT反变换后,用于规范化的函数
__global__ void normalizing(cufftComplex* data, int data_len)
{
int idx = blockDim.x*blockIdx.x + threadIdx.x;
data[idx].x /= data_len;
data[idx].y /= data_len;
}
void Check(cudaError_t status)
{
if (status != cudaSuccess)
{
cout << "行号:" << __LINE__ << endl;
cout << "错误:" << cudaGetErrorString(status) << endl;
}
}
int cufft_test()
{
const int Nt = 256;
const int BATCH = 1;
//BATCH用于批量处理一批一维数据,当BATCH=2时
//则将0-1024,1024-2048作为两个一维信号做FFT处理变换
cufftComplex* host_in, *host_out, *device_in, *device_out;
//主机内存申请及初始化--主机锁页内存
Check(cudaMallocHost((void**)&host_in, Nt * sizeof(cufftComplex)));
Check(cudaMallocHost((void**)&host_out, Nt * sizeof(cufftComplex)));
for (int i = 0; i < Nt; i++)
{
host_in[i].x = i + 1;
host_in[i].y = i + 1;
}
//设备内存申请
Check(cudaMalloc((void**)&device_in, Nt * sizeof(cufftComplex)));
Check(cudaMalloc((void**)&device_out, Nt * sizeof(cufftComplex)));
//数据传输--H2D
Check(cudaMemcpy(device_in, host_in, Nt * sizeof(cufftComplex), cudaMemcpyHostToDevice));//cpu-gpu
//创建cufft句柄
cufftHandle cufftForwrdHandle, cufftInverseHandle;
cufftPlan1d(&cufftForwrdHandle, Nt, CUFFT_C2C, BATCH);
cufftPlan1d(&cufftInverseHandle, Nt, CUFFT_C2C, BATCH);
//执行fft正变换
cufftExecC2C(cufftForwrdHandle, device_in, device_out, CUFFT_FORWARD);
//数据传输--gpu-cpu
Check(cudaMemcpy(host_out, device_out, Nt * sizeof(cufftComplex), cudaMemcpyDeviceToHost));
//设置输出精度--正变换结果输出
cout<< "正变换结果:" << endl;
cout.setf(20);
for (int i = 0; i < Nt; i++)
{
cout << host_out[i].x << "+j*" << host_out[i].y << endl;
}
//执行fft反变换
cufftExecC2C(cufftInverseHandle, device_out, device_in, CUFFT_INVERSE);
//IFFT结果是真值的N倍,因此要做/N处理
dim3 grid(Nt / 128);
dim3 block(128);
normalizing << <grid, block >> > (device_in, Nt);
//数据传输--D2H
Check(cudaMemcpy(host_in, device_in, Nt * sizeof(cufftComplex), cudaMemcpyDeviceToHost));
//设置输出精度--反变换结果输出
cout << "反变换结果:" << endl;
cout.setf(20);
for (int i = 0; i < Nt; i++)
{
cout << host_in[i].x << "+j*" << host_in[i].y << endl;
}
//cin.get();
return 0;
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化