diff --git a/npu_tuned_model/llm/deepseek_v3/README.md b/npu_tuned_model/llm/deepseek_v3/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..c042bc2155298a50f9f7a39b762ea00a04f6eee9
--- /dev/null
+++ b/npu_tuned_model/llm/deepseek_v3/README.md
@@ -0,0 +1,207 @@
+# DeepseekV3
+
+本sample主要是DeepseekV3模型在npu上的推理适配点介绍,使用transformers==4.40.0版本,基于DeepseekV3开源方法[modeling_deepseek.py](https://huggingface.co/deepseek-ai/DeepSeek-V3-Base/blob/main/modeling_deepseek.py)进行迁移。
+
+---
+
+# 1. Quick Start:执行样例
+
+本sample的目录下提供了手动Tensor并行及DeepseekV3推理的执行样例参考
+
+## 1.1. 环境准备
+**基于搭建的conda环境,安装对应的transformers版本**
+
+```shell
+pip3 install transformers==4.40.0
+```
+
+**依赖MindSpeed提供的GMM算子,安装[MindSpeed](https://gitee.com/ascend/MindSpeed)**
+
+```shell
+git clone https://gitee.com/ascend/MindSpeed.git
+pip install -e MindSpeed
+```
+
+**设置环境变量**
+
+```shell
+cann_path=/usr/local/Ascend
+source ${cann_path}/latest/bin/setenv.bash # 昇腾cann包安装目录
+
+export ASCEND_HOME_PATH=${cann_path}/latest
+export HCCL_OP_EXPANSION_MODE=AIV # HCCL AIVector Core加速
+```
+
+## 1.2. 权重准备
+**手动切分权重**
+
+循环调用scripts/split_weight.py处理每个device对应的权重。其中WORLD_SIZE表示推理的卡数,path_to_deepseek_model_origin为原始完整权重路径,path_to_deepseek_model_tp为TP切分后的新权重落盘路径
+
+```shell
+export WORLD_SIZE=8
+
+for((i=0; i<${WORLD_SIZE}; i++))
+do
+ export LOCAL_RANK=$i
+ python scripts/split_weight.py --model-path "path_to_deepseek_model_origin" --output-path "path_to_deepseek_model_after_tp"
+done
+```
+- 已提供权重切分脚本`split_weight.py`
+
+## 1.3. DeepseekV3多卡推理
+
+本sample的目录下提供了通过同时拉起多个进程的方式,实现了多卡推理。同时提供了推理脚本`infer.py`作为参考。
+
+```shell
+export WORLD_SIZE=8
+export ENABLE_PROFILE=1
+export PROFILING_PATH="profiling_path"
+export HCCL_DETERMINISTIC=true
+
+for((i=0; i<${WORLD_SIZE}; i++))
+do
+ export LOCAL_RANK=$i
+ export RANK_ID=$i
+ python3 infer.py \
+ --model_name=${MODEL_NAME} --model_path=${MODEL_DIR} \
+ --input_max_len=${INPUT_MAX_LEN} --max_new_tokens=${MAX_NEW_TOKENS} --batch_size=${BATCH_SIZE} \
+ --tokenizer_mode=${TOKENIZER_MODE} --execute_mode=${EXE_MODE} \
+ --profiling_path=${PROFILING_PATH} &
+done
+```
+
+---
+
+# 2. 目录结构
+
+本sample目录结构与文件介绍如下:
+- `engine`目录:涉及通用模型执行引擎`model_run.py`
+ - `model_run.py`:模型执行引擎,包含模型初始化、模型加载、tokenizer初始化、模型推理等通用基类方法。
+- `scripts`目录:涉及当前DeepseekV3模型执行涉及的相关脚本
+ - `models`目录:涉及模型脚本
+ - `configuration_deepseek.py`:DeepseekV3模型配置config
+ - `modeling_deepseek.py`:DeepseekV3模型脚本
+ - `runner_deepseek.py`:基于通用模型执行引擎进行继承,适配当前模型所需各项内容
+ - `split_weight.py`:权重切分工具
+ - `infer.py`:DeepSeekV3模型推理执行脚本
+
+---
+
+# 3. 模型迁移、适配与优化
+
+[模型迁移指导](https://www.hiascend.com/document/detail/zh/Pytorch/60RC3/ptmoddevg/trainingmigrguide/PT_LMTMOG_0002.html)
+
+## 3.1. 权重切分与手动Tensor并行
+
+以DeepseekV3的开源尝试为样本,进行Tensor并行尝试。推理时我们需要对模型权重进行切分,使得内存占用小于device可用内存。当前sample以Tensor并行为例,对DeepseekV3的权重进行了手动切分。
+
+手动Tensor并行主要涉及以下几步:
+
+- 定义切分后的模型权重,涉及DeepseekV3Attention、DeepseekV3MLP两个类
+- 切分模型权重,可参考scripts/split_weight.py中的split_w函数,将Attention层的q/k/v Weight在N轴上切分成TP份,将MOE层每个专家中的w1/w3 weight在N轴上切分TP份,w2在K轴进行切分
+- Attention层和MOE层结尾处插入allreduce算子
+
+## 3.2. 性能优化
+
+**注**:在modeling_deepseek.py中,被修改的原函数都加了‘__’前缀,可用于对比修改后的函数变化。deepseek结构中的非MOE部分与Llama类似,通用优化点可参考[Llama](https://gitee.com/ascend/torchair/tree/master/npu_tuned_model/llm/llama)的改动,如固定kv cache大小、cos/sin优化、Add+RMSNorm融合、全量优化LM Head计算量。本sample重点展示其余改动点。
+
+### 3.2.1. 算法优化
+
+**DeepseekV2低秩压缩优化**
+参考[DeepSeek-V2论文](https://arxiv.org/pdf/2405.04434)中提及的低秩压缩方法,本sample对`DeepseekV3Attention`类进行修改
+- 将原始实现中的`kv_b_proj`拆分成`kv_b_proj_w_k`与`kv_b_proj_w_v`,权重切分方式参考`split_weight.py`
+- 相关计算过程在`forward`方法中体现
+
+### 3.2.2. 算子融合
+**GMM使能&&Routing优化**
+
+Hugging face原始的MOE实现比较朴素,for循环处理每个专家,单独计算expert_num个FFN,计算效率较低。
+
+CANN提供了[GroupedMatmul](https://gitee.com/ascend/MindSpeed/blob/master/docs/ops/gmm.md)算子,可以同时计算多个专家,提高计算和搬运效率。为了使能GroupedMatmul算子,我们需修改Routing逻辑,构造对应输入。
+
+- 整体上进行`DeepseekV3MoE`重构,原始实现体现在`__DeepseekV3MoE`类中
+ - 路由专家计算过程,主要涉及`DeepSeekV3MLP`类,适配GroupedMatmul算子并修改为`DeepSeekV3MLPGMM`类
+ - 路由专家的权重在`DeepSeekV3MLPGMM`中进行了专家合并,合并为了一个weight,体现在`split_weight.py`中。进行tensor并行切分时,同时对`DeepSeekV3MLPGMM`进行切分
+ - 共享专家依旧沿用`DeepSeekV3MLP`类
+
+- 专家路由基础流程参考[GMM使能&&Routing优化](https://gitee.com/ascend/torchair/blob/master/npu_tuned_model/llm/mixtral/README.md)实现,体现在`DeepseekV3MoE`类中的`moe_infer_normal`函数
+- 同时,可通过使能CANN提供的torch_npu moe_routing相关算子进行优化,体现在`DeepseekV3MoE`类中的`moe_infer_fusion`函数。
+ - 可通过设置`self.npu_routing_kernel=True`类使能,默认为True
+ - 可通过使能[torch_npu.npu_moe_init_routing](https://www.hiascend.com/document/detail/zh/Pytorch/60RC3/apiref/apilist/ptaoplist_000780.html)替换基础流程中专家排布获取环节
+ - 可通过使能[torch_npu.npu_moe_compute_expert_tokens](https://www.hiascend.com/document/detail/zh/Pytorch/60RC3/apiref/apilist/ptaoplist_000782.html)替换基础流程中专家获得token数计算环节
+ - 可通过使能[torch_npu.npu_moe_finalize_routing](https://www.hiascend.com/document/detail/zh/Pytorch/60RC3/apiref/apilist/ptaoplist_000781.html)替换基础流程中专家计算完成后的重新排布环节,用于获得最终输出
+
+**MoeGate亲和优化**
+原始实现中,通过`torch.zeros_like`与`scatter`算子来进行`group_mask`获取:
+```python
+group_mask = torch.zeros_like(group_scores) # [n, n_group]
+group_mask.scatter_(1, group_idx, 1) # [n, n_group]
+```
+
+在本sample中,通过`one_hot`与`sum`进行等价替换:
+```python
+def one_hot(tensor, num_classes):
+ index = torch.arange(0, num_classes, dtype=tensor.dtype, device=tensor.device)
+ return (
+ tensor.view([*tensor.shape, 1]) == index.view([1] * tensor.ndim + [num_classes])
+ ).to(torch.float32)
+
+group_mask = one_hot(group_idx, self.n_group) # [n, n_group]
+group_mask = torch.sum(group_mask, dim=1) # [n, n_group]
+```
+
+**MLP合并优化**
+原始`DeepseekV3MLP`实现中,存在`gate_proj`、`up_proj`与`down_proj`三个matmul运算,可通过将`gate_proj`与`up_proj`进行合并整合计算,提升整体计算效率。
+- 整体上进行`DeepseekV3MLP`重构,原始实现体现在`__DeepseekV3MLP`类中
+- 权重切分过程中,需要额外对`gate_proj`与`up_proj`的权重进行合并,体现在`split_weight.py`中
+
+### 3.2.3. 图模式适配
+
+在图模式适配过程中,需要**注意**:
+
+ - 需先保证模型在npu上的eager模式功能正常和精度正确,然后再进行图模式的迁移和适配。
+
+考虑到LLM prefill阶段,query的seq length经常是变化的;decode阶段,seq length通常是固定的。本sample通过提前引入输入padding,将输入padding到预设长度,同时以静态图的方式执行Prefill & Decode。
+
+CompilerConfig配置参考[torchair资料](https://www.hiascend.com/document/detail/zh/Pytorch/60RC2/modthirdparty/torchairuseguide/torchair_0021.html)
+
+- torchair提供了NPU的图构造/图编译/图执行能力。相关能力全部集成到NPU图的后端,在使用torch.compile接口时,指定NPU图后端来使能。同时提供了开关和config控制图的编译和执行流程。
+- 在使用NPU图后端的时候,torchair提供了静态图和动态图两种图执行的能力。根据dynamic参数决定是否走动态图。
+
+### 3.2.4. HCCL使能AIV
+
+利用Device的AI Vector Core计算单元来加速AllReduce,可参考[HCCL_OP_EXPANSION_MODE环境变量](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC2alpha003/apiref/envref/envref_07_0088.html)
+
+```shell
+export HCCL_OP_EXPANSION_MODE=AIV
+```
+---
+
+# 4. 附录:环境变量说明
+
+
+
+ 类别归属 | 环境变量 | 说明 |
+
+ 环境配置项 |
+ WORLD_SIZE | 多卡执行时,用于声明可使用的卡数 |
+ LOCAL_RANK | 每个进程在整体通信域中感知到的rank_id |
+ RANK_ID | 每个进程在整体通信域中感知到的rank_id |
+
+ 模型基础配置项 |
+ MODEL_NAME | 模型名 |
+ MODEL_DIR | 权重路径,必须配置到模型权重所在文件夹 |
+ INPUT_MAX_LEN | 本sample默认将输入padding到固定长度进行执行 |
+ MAX_NEW_TOKENS | 用于配置最多decode生成字符个数 |
+ BATCH_SIZE | 默认执行prefill-1batch, decode-nBatch模式。可通过设置该环境变量,使能decode多batch推理,默认为1 |
+ TOKENIZER_MODE | 可使用不同的tokenizer,用于生成不同的prompt进行推理。支持default与chat两种,默认为default |
+
+ 执行模式配置 |
+ EXE_MODE | 用于区分图模式与单算子模式。eager表示单算子模式,dynamo表示图模式。默认为单算子模式 |
+
+ 调测配置项 |
+ ENABLE_PROFILE | 是否执行Profiling用于性能分析,默认不开启 |
+ PROFILING_PATH | 用于指定Profiling数据生成路径 |
+ HCCL_DETERMINISTIC | 可设置该环境变量为true,用于使能多卡间的确定性计算。默认为false |
+ HCCL_OP_EXPANSION_MODE | 利用Device的AI Vector Core计算单元来加速AllReduce。与确定性计算HCCL_DETERMINISTIC互斥 |
+
\ No newline at end of file
diff --git a/npu_tuned_model/llm/deepseek_v3/engine/model_runner.py b/npu_tuned_model/llm/deepseek_v3/engine/model_runner.py
new file mode 100644
index 0000000000000000000000000000000000000000..92f6d38e3b4a47f9d34b4c4bcf1f0826ca0e6917
--- /dev/null
+++ b/npu_tuned_model/llm/deepseek_v3/engine/model_runner.py
@@ -0,0 +1,192 @@
+# coding=utf-8
+# Copyright (c) 2024, HUAWEI CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import os
+import time
+import argparse
+import logging
+import copy
+import numpy as np
+import torch
+import torch_npu
+
+from transformers import AutoTokenizer
+
+root_logger = logging.getLogger()
+root_logger.handlers.clear()
+logging.basicConfig(format='%(asctime)s - %(levelname)s - [LLM](%(filename)s:%(lineno)d): %(message)s',
+ level=logging.INFO)
+logging.getLogger("paramiko").setLevel(logging.ERROR)
+
+torch.manual_seed(42)
+torch.npu.manual_seed_all(42)
+
+
+class InferenceContextManager:
+ def __enter__(self):
+ return self
+
+ def __exit__(self, exc_type, exc_value, traceback):
+ pass
+
+
+class ModelRunner:
+ def __init__(self, model_path, execute_mode, **kwargs):
+ self.model_name = kwargs.get("model_name", "default_model_name")
+ self.dtype = kwargs.get("dtype", torch.bfloat16)
+ self.max_position_embeddings = kwargs.get("max_position_embeddings", 131072)
+ self.input_max_len = kwargs.get("input_max_len", 1024)
+ self.max_new_tokens = kwargs.get("max_new_tokens", 32)
+ self.batch_size = kwargs.get("batch_size", 72)
+ self.tokenizer = None
+ self.model = None
+ self.device = None
+ self.local_rank = int(os.getenv("LOCAL_RANK", "0"))
+ self.rank_offset = int(os.getenv("RANK_OFFSET", "0"))
+ self.global_rank = self.local_rank + self.rank_offset
+ self.world_size = int(os.getenv("WORLD_SIZE", "1"))
+ if self.world_size == 1:
+ self.model_path = model_path
+ else:
+ self.model_path = os.path.join(model_path, f"rank_{self.local_rank}")
+ self.use_pretrained_model = True
+ self.execute_mode = execute_mode
+ self.tokenizer_mode = kwargs.get("tokenizer_mode", "default")
+ self.profiling_path = kwargs.get("profiling_path", "")
+ self.enable_profile = False
+ self.init_device()
+
+ def init_device(self):
+ logging.info("Set execution using npu index: %s, global: %s", self.local_rank, self.global_rank)
+ self.device = torch.device("%s:%s" % ("npu", self.local_rank))
+ torch.npu.set_device(self.device)
+
+ master_addr = os.environ["MASTER_ADDR"]
+ master_port = int(os.environ["MASTER_PORT"])
+
+ if torch.npu.is_available() and self.world_size > 1:
+ torch.distributed.init_process_group(
+ backend="hccl", world_size=self.world_size, rank=self.global_rank)
+
+ def init_model(self, model, config=None):
+ if self.use_pretrained_model:
+ self.load_model(model)
+ else:
+ self.init_model_from_config(model, config=config)
+ self.to_device()
+ self.cast_format()
+ self.compile_model()
+ self.init_tokenizer()
+
+ def init_model_from_config(self, model, config):
+ assert config is not None
+ config_file = "*.json"
+ model_config = config.from_pretrained(config_file, torch_dtype=self.dtype,
+ max_position_embeddings=self.max_position_embeddings)
+ self.model = model(model_config).to(self.dtype)
+
+ def load_model(self, model):
+ logging.info("Try to load pretrained model in path: %s", self.model_path)
+ self.model = model.from_pretrained(self.model_path,
+ low_cpu_mem_usage=True,
+ ignore_mismatched_sizes=True,
+ torch_dtype=self.dtype,
+ max_position_embeddings=self.max_position_embeddings)
+
+ def save_model(self):
+ pass
+
+ def to_device(self):
+ self.model.to(self.device)
+
+ def cast_format(self):
+ pass
+
+ def compile_model(self):
+ logging.info("The final model structure is: \n %s", self.model)
+ if self.execute_mode == "dynamo":
+ logging.info("Try to compile model")
+ self.graph_compile()
+
+ def init_tokenizer(self):
+ self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, padding_side="right", truncation_side='right')
+ if self.tokenizer.pad_token is None:
+ self.tokenizer.pad_token = self.tokenizer.eos_token
+ self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
+
+ def graph_compile(self):
+ import torchair as tng
+ import torchair.ge_concrete_graph.ge_converter.experimental.patch_for_hcom_allreduce
+ from torchair.configs.compiler_config import CompilerConfig
+
+ compiler_config = CompilerConfig()
+ compiler_config.experimental_config.frozen_parameter = True
+ compiler_config.experimental_config.tiling_schedule_optimize = True
+ npu_backend = tng.get_npu_backend(compiler_config=compiler_config)
+ self.model.model = torch.compile(self.model.model, dynamic=True, fullgraph=False, backend=npu_backend)
+
+ def mark_inputs(self, model_inputs):
+ if self.execute_mode == "dynamo":
+ pass
+
+ def model_input_prepare(self, input_dict):
+ return None
+
+ def repeat_batch(self, tensor, N):
+ if N == 1:
+ return tensor
+ return tensor.repeat(N, *[1]*(tensor.dim() - 1))
+
+ def model_output_process(self, model_inputs, outputs, input_dict):
+ pass
+
+ def _define_profiling(self, profile_switch=False, profile_save_path="prof"):
+ if profile_switch:
+ os.makedirs(profile_save_path, exist_ok=True)
+ experimental_config = torch_npu.profiler._ExperimentalConfig(
+ profiler_level=torch_npu.profiler.ProfilerLevel.Level1,
+ aic_metrics=torch_npu.profiler.AiCMetrics.PipeUtilization
+ )
+ profiler = torch_npu.profiler.profile(
+ activities=[torch_npu.profiler.ProfilerActivity.NPU,
+ torch_npu.profiler.ProfilerActivity.CPU],
+ with_stack=False,
+ record_shapes=False,
+ profile_memory=False,
+ experimental_config=experimental_config,
+ schedule=torch_npu.profiler.schedule(wait=0, warmup=0, active=1, repeat=1, skip_first=0),
+ on_trace_ready=torch_npu.profiler.tensorboard_trace_handler(profile_save_path)
+ )
+ else:
+ profiler = InferenceContextManager()
+ return profiler
+
+ def model_inference(self, model_inputs, warm_up=False, profile_switch=False, profile_save_path=""):
+ torch.npu.synchronize()
+ if warm_up:
+ self.mark_inputs(model_inputs)
+ profiler = self._define_profiling(profile_switch, profile_save_path)
+ start_time = time.time()
+ with profiler as prof:
+ with torch.no_grad():
+ logits = self.model(**model_inputs)
+
+ torch.npu.synchronize()
+ end_time = time.time()
+ logging.info(f"{self.model_name} inference time cost {(end_time - start_time)*1000:.2f} ms")
+ return logits
+
+ def model_generate(self, prompts, warm_up=False, **kwargs):
+ pass
diff --git a/npu_tuned_model/llm/deepseek_v3/scripts/infer.py b/npu_tuned_model/llm/deepseek_v3/scripts/infer.py
new file mode 100644
index 0000000000000000000000000000000000000000..5ba6bf472b5c9cbd4379096873f723be69e157a4
--- /dev/null
+++ b/npu_tuned_model/llm/deepseek_v3/scripts/infer.py
@@ -0,0 +1,125 @@
+# coding=utf-8
+# Copyright (c) 2024, HUAWEI CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import os
+import sys
+import time
+import argparse
+import logging
+import json
+import torch
+
+CUR_DIR = os.path.dirname(__file__)
+ROOT_DIR = os.path.realpath(os.path.join(CUR_DIR, ".."))
+sys.path.append(ROOT_DIR)
+from runner_deepseek import DeepSeekRunner
+
+root_logger = logging.getLogger()
+root_logger.handlers.clear()
+logging.basicConfig(format='%(asctime)s - %(levelname)s - [LLM](%(filename)s:%(lineno)d): %(message)s',
+ level=logging.INFO)
+logging.getLogger("paramiko").setLevel(logging.ERROR)
+torch.manual_seed(42)
+torch.npu.manual_seed_all(42)
+
+
+# basic token generater
+def generate_default_prompt():
+ # prompts的size大小决定了模型执行时的batch size大小
+ _PROMPTS = [
+ "用一句话描述地球为什么是独一无二的。",
+ "给出一段对话,使用合适的语气和回答方式继续对话。\n对话:\nA:你今天看起来很高兴,发生了什么好事?\nB:是的,我刚刚得到一份来自"
+ # "梅西银行的工作通知书。\nA:哇,恭喜你!你打算什么时候开始工作?\nB:下个月开始,所以我现在正为这份工作做准备。",
+ # "Let x = 1. What is x << 3 in Python 3? the answer is",
+ # "In Python 3, what is ['a', 'Chemistry', 0, 1][-3]?",
+ # "The study of older adults and aging is reffered to as",
+ # "Why is the sky blue?",
+ # "What's your name?",
+ # "Hello my name is",
+ ]
+ return _PROMPTS
+
+
+def generate_chat_prompt(bs):
+ _PROMPTS = [
+ {"role": "user", "content": "Write a piece of quicksort code in C++"},
+ ]
+ _PROMPTS = [_PROMPTS] * (bs // len(_PROMPTS) + 1)
+ _PROMPTS = _PROMPTS[:bs]
+ logging.info(f"chat prompt batch size: {bs}")
+ return _PROMPTS
+
+
+def generate_prompt(bs, tokenizer_mode):
+ if tokenizer_mode == "default":
+ return generate_default_prompt()
+ else:
+ return generate_chat_prompt(bs)
+
+
+def parse_args():
+ parser = argparse.ArgumentParser(description="llm run parameters")
+ parser.add_argument('--model_path', type=str, help="Path of model weights")
+ parser.add_argument('--model_name', type=str, help="Model name")
+ parser.add_argument('--execute_mode', type=str, default="eager", choices=["dynamo", "eager"],
+ help="eager or dynamo")
+ parser.add_argument('--tokenizer_mode', type=str, default="default", choices=["default", "chat"],
+ help="tokenizer_mode should be default or chat")
+ parser.add_argument('--profiling_path', type=str, help="Path of profiling, not set means no dump")
+ parser.add_argument('--local_rank', type=int, default=0, help="local rank id for torch distributed launch")
+ parser.add_argument('--input_max_len', type=int, default=1024, help="Max number of input")
+ parser.add_argument('--max_new_tokens', type=int, default=32, help="Max number of new tokens")
+ parser.add_argument('--batch_size', type=int, default=2, help="Batch size for testing")
+ parser.add_argument('--json_path', type=str, help="Path of settings")
+ parser_args = parser.parse_args()
+ return parser_args
+
+
+def run_deepseek(model_path, execute_mode, **kwargs):
+ _PROMPTS = generate_prompt(1, args.tokenizer_mode)
+ model_runner = DeepSeekRunner(model_path, execute_mode, **kwargs)
+ # 表示在图模式下开启算子二进制复用,提高图模式下编译阶段性能
+ torch.npu.set_compile_mode(jit_compile=False)
+ model_runner.init_model()
+ # warmup
+ model_runner.model_generate(_PROMPTS, warm_up=True, **kwargs)
+ # generate perf data
+ model_runner.model_generate(_PROMPTS, **kwargs)
+ if model_runner.profiling_path:
+ model_runner.set_enable_profile(True)
+ model_runner.model_generate(_PROMPTS, **kwargs)
+
+
+if __name__ == "__main__":
+ args = parse_args()
+ input_max_len = args.input_max_len # 输入padding的长孺
+ max_new_tokens = args.max_new_tokens # 最大输出token的个数
+ max_position_embeddings = input_max_len + max_new_tokens # 用于申请kv_cache时指定seq_len长度
+ model_config = {
+ "dtype": torch.bfloat16,
+ "input_max_len": input_max_len,
+ "max_new_tokens": max_new_tokens,
+ "max_position_embeddings": max_position_embeddings
+ }
+ run_config = {
+ "tokenizer_mode": args.tokenizer_mode,
+ "profiling_path": args.profiling_path,
+ "batch_size": args.batch_size,
+ "model_name": args.model_name
+ }
+ config = {**model_config, **run_config}
+ os.environ["EXE_MODE"] = args.execute_mode
+ run_deepseek(args.model_path, args.execute_mode, **config)
+ logging.info("model run success")
diff --git a/npu_tuned_model/llm/deepseek_v3/scripts/models/configuration_deepseek.py b/npu_tuned_model/llm/deepseek_v3/scripts/models/configuration_deepseek.py
new file mode 100644
index 0000000000000000000000000000000000000000..6fd2e9615f6e77fd61f8c45370cf803c936423ec
--- /dev/null
+++ b/npu_tuned_model/llm/deepseek_v3/scripts/models/configuration_deepseek.py
@@ -0,0 +1,206 @@
+from transformers.configuration_utils import PretrainedConfig
+from transformers.utils import logging
+
+logger = logging.get_logger(__name__)
+
+DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
+class DeepseekV3Config(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
+ defaults will yield a similar configuration to that of the DeepSeek-V2.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 102400):
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`DeepseekV3Model`]
+ hidden_size (`int`, *optional*, defaults to 4096):
+ Dimension of the hidden representations.
+ intermediate_size (`int`, *optional*, defaults to 11008):
+ Dimension of the MLP representations.
+ moe_intermediate_size (`int`, *optional*, defaults to 1407):
+ Dimension of the MoE representations.
+ num_hidden_layers (`int`, *optional*, defaults to 32):
+ Number of hidden layers in the Transformer decoder.
+ num_attention_heads (`int`, *optional*, defaults to 32):
+ Number of attention heads for each attention layer in the Transformer decoder.
+ n_shared_experts (`int`, *optional*, defaults to None):
+ Number of shared experts, None means dense model.
+ n_routed_experts (`int`, *optional*, defaults to None):
+ Number of routed experts, None means dense model.
+ routed_scaling_factor (`float`, *optional*, defaults to 1.0):
+ Scaling factor or routed experts.
+ topk_method (`str`, *optional*, defaults to `gready`):
+ Topk method used in routed gate.
+ n_group (`int`, *optional*, defaults to None):
+ Number of groups for routed experts.
+ topk_group (`int`, *optional*, defaults to None):
+ Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
+ num_experts_per_tok (`int`, *optional*, defaults to None):
+ Number of selected experts, None means dense model.
+ moe_layer_freq (`int`, *optional*, defaults to 1):
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
+ \--k dense layers--/
+ norm_topk_prob (`bool`, *optional*, defaults to False):
+ Whether to normalize the weights of the routed experts.
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
+ Method of computing expert weights.
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
+ Auxiliary loss weight coefficient.
+ seq_aux = (`bool`, *optional*, defaults to True):
+ Whether to compute the auxiliary loss for each individual sample.
+ num_key_value_heads (`int`, *optional*):
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
+ by meanpooling all the original heads within that group. For more details checkout [this
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
+ `num_attention_heads`.
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
+ The non-linear activation function (function or string) in the decoder.
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
+ The maximum sequence length that this model might ever be used with.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
+ The epsilon used by the rms normalization layers.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+ pad_token_id (`int`, *optional*):
+ Padding token id.
+ bos_token_id (`int`, *optional*, defaults to 1):
+ Beginning of stream token id.
+ eos_token_id (`int`, *optional*, defaults to 2):
+ End of stream token id.
+ pretraining_tp (`int`, *optional*, defaults to 1):
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
+ issue](https://github.com/pytorch/pytorch/issues/76232).
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
+ Whether to tie weight embeddings
+ rope_theta (`float`, *optional*, defaults to 10000.0):
+ The base period of the RoPE embeddings.
+ rope_scaling (`Dict`, *optional*):
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
+ `max_position_embeddings` to the expected new maximum.
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+
+ ```python
+ >>> from transformers import DeepseekV3Model, DeepseekV3Config
+
+ >>> # Initializing a Deepseek-V2 style configuration
+ >>> configuration = DeepseekV3Config()
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "deepseek_v2"
+ keys_to_ignore_at_inference = ["past_key_values"]
+
+ def __init__(
+ self,
+ vocab_size=102400,
+ hidden_size=4096,
+ intermediate_size=11008,
+ moe_intermediate_size = 1407,
+ num_hidden_layers=30,
+ num_attention_heads=32,
+ num_key_value_heads=32,
+ n_shared_experts = None,
+ n_routed_experts = None,
+ ep_size = 1,
+ routed_scaling_factor = 1.0,
+ kv_lora_rank = 512,
+ q_lora_rank = 1536,
+ qk_rope_head_dim = 64,
+ v_head_dim = 128,
+ qk_nope_head_dim = 128,
+ topk_method = 'gready',
+ n_group = None,
+ topk_group = None,
+ num_experts_per_tok = None,
+ moe_layer_freq = 1,
+ first_k_dense_replace = 0,
+ norm_topk_prob = False,
+ scoring_func = 'softmax',
+ aux_loss_alpha = 0.001,
+ seq_aux = True,
+ hidden_act="silu",
+ max_position_embeddings=2048,
+ initializer_range=0.02,
+ rms_norm_eps=1e-6,
+ use_cache=True,
+ pad_token_id=None,
+ bos_token_id=100000,
+ eos_token_id=100001,
+ pretraining_tp=1,
+ tie_word_embeddings=False,
+ rope_theta=10000.0,
+ rope_scaling=None,
+ attention_bias=False,
+ attention_dropout=0.0,
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.hidden_size = hidden_size
+ self.intermediate_size = intermediate_size
+ self.moe_intermediate_size = moe_intermediate_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.n_shared_experts = n_shared_experts
+ self.n_routed_experts = n_routed_experts
+ self.ep_size = ep_size
+ self.routed_scaling_factor = routed_scaling_factor
+ self.kv_lora_rank = kv_lora_rank
+ self.q_lora_rank = q_lora_rank
+ self.qk_rope_head_dim = qk_rope_head_dim
+ self.v_head_dim = v_head_dim
+ self.qk_nope_head_dim = qk_nope_head_dim
+ self.topk_method = topk_method
+ self.n_group = n_group
+ self.topk_group = topk_group
+ self.num_experts_per_tok = num_experts_per_tok
+ self.moe_layer_freq = moe_layer_freq
+ self.first_k_dense_replace = first_k_dense_replace
+ self.norm_topk_prob = norm_topk_prob
+ self.scoring_func = scoring_func
+ self.aux_loss_alpha = aux_loss_alpha
+ self.seq_aux = seq_aux
+ # for backward compatibility
+ if num_key_value_heads is None:
+ num_key_value_heads = num_attention_heads
+
+ self.num_key_value_heads = num_key_value_heads
+ self.hidden_act = hidden_act
+ self.initializer_range = initializer_range
+ self.rms_norm_eps = rms_norm_eps
+ self.pretraining_tp = pretraining_tp
+ self.use_cache = use_cache
+ self.rope_theta = rope_theta
+ self.rope_scaling = rope_scaling
+ self.attention_bias = attention_bias
+ self.attention_dropout = attention_dropout
+
+ super().__init__(
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ tie_word_embeddings=tie_word_embeddings,
+ **kwargs,
+ )
\ No newline at end of file
diff --git a/npu_tuned_model/llm/deepseek_v3/scripts/models/modeling_deepseek.py b/npu_tuned_model/llm/deepseek_v3/scripts/models/modeling_deepseek.py
new file mode 100644
index 0000000000000000000000000000000000000000..6b4d7f33e1ad501a472986b43e93691bb7fda1cd
--- /dev/null
+++ b/npu_tuned_model/llm/deepseek_v3/scripts/models/modeling_deepseek.py
@@ -0,0 +1,2414 @@
+# coding=utf-8
+# Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
+#
+# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
+# and OPT implementations in this library. It has been modified from its
+# original forms to accommodate minor architectural differences compared
+# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch DeepSeek model."""
+import os
+import math
+import warnings
+from typing import List, Optional, Tuple, Union
+
+import torch
+import torch.nn.functional as F
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+import torch_npu
+from mindspeed.ops import gmm
+
+from transformers.activations import ACT2FN
+from transformers.cache_utils import Cache, DynamicCache
+from transformers.modeling_attn_mask_utils import (
+ AttentionMaskConverter,
+ _prepare_4d_attention_mask,
+ _prepare_4d_causal_attention_mask,
+)
+from transformers.modeling_outputs import (
+ MoeCausalLMOutputWithPast,
+ MoeModelOutputWithPast,
+ BaseModelOutputWithPast,
+ CausalLMOutputWithPast,
+ SequenceClassifierOutputWithPast,
+)
+from transformers.modeling_utils import PreTrainedModel
+from transformers.pytorch_utils import (
+ ALL_LAYERNORM_LAYERS,
+ is_torch_greater_or_equal_than_1_13,
+)
+from transformers.utils import (
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ is_flash_attn_2_available,
+ is_flash_attn_greater_or_equal_2_10,
+ logging,
+ replace_return_docstrings,
+)
+from transformers.utils.import_utils import is_torch_fx_available
+from .configuration_deepseek import DeepseekV3Config
+import torch.distributed as dist
+import numpy as np
+
+if is_flash_attn_2_available():
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
+
+
+# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
+# It means that the function will not be traced through and simply appear as a node in the graph.
+if is_torch_fx_available():
+ if not is_torch_greater_or_equal_than_1_13:
+ import torch.fx
+
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "DeepseekV3Config"
+
+
+def _use_return_dict(self):
+ # return self.config.use_return_dict(self)
+ return False
+
+
+def _get_unpad_data(attention_mask):
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
+ cu_seqlens = F.pad(
+ torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
+ )
+ return (
+ indices,
+ cu_seqlens,
+ max_seqlen_in_batch,
+ )
+
+
+class DeepseekV3RMSNorm(nn.Module):
+ def __init__(self, hidden_size, eps=1e-6):
+ """
+ DeepseekV3RMSNorm is equivalent to T5LayerNorm
+ """
+ super().__init__()
+ self.weight = nn.Parameter(torch.ones(hidden_size))
+ self.variance_epsilon = eps
+
+ def __forward(self, hidden_states, residual: Optional[torch.Tensor] = None):
+ input_dtype = hidden_states.dtype
+ hidden_states = hidden_states.to(torch.float32)
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
+ return self.weight * hidden_states.to(input_dtype)
+
+ def ln_npu(self, hidden_states):
+ result = torch_npu.npu_rms_norm(hidden_states, self.weight, self.variance_epsilon)[0]
+ return result
+
+ def forward(self, hidden_states, *args):
+ if len(args) == 0: # only hidden _states exists
+ result = self.ln_npu(hidden_states)
+ return result
+ elif len(args) == 1 and args[0] is None: # residual is None
+ result = self.ln_npu(hidden_states)
+ residual = hidden_states
+ return (result, residual)
+ elif len(args) == 1: # residual is not None
+ residual = args[0]
+ y, _, x = torch_npu.npu_add_rms_norm(residual, hidden_states, self.weight, self.variance_epsilon)
+ return (y, x)
+ else:
+ raise NotImplementedError(
+ f"insupportable DeepseekV3RMSNorm for input_args len as (include hid): {len(args) + 1}"
+ )
+
+
+ALL_LAYERNORM_LAYERS.append(DeepseekV3RMSNorm)
+
+
+class DeepseekV3RotaryEmbedding(nn.Module):
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
+ super().__init__()
+
+ self.dim = dim
+ self.max_position_embeddings = max_position_embeddings
+ self.base = base
+ inv_freq = 1.0 / (
+ self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
+ )
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
+
+ # Build here to make `torch.jit.trace` work.
+ self._set_cos_sin_cache(
+ seq_len=max_position_embeddings,
+ device=self.inv_freq.device,
+ dtype=torch.get_default_dtype(),
+ )
+ # self.max_seq_len_cached = None
+
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
+ self.max_seq_len_cached = seq_len
+ t = torch.arange(
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
+ )
+
+ freqs = torch.outer(t, self.inv_freq.to(t.device))
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
+ emb = torch.cat((freqs, freqs), dim=-1)
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
+
+ def __forward(self, x, kv_len=None, max_seq_len=None):
+ # x: [bs, num_attention_heads, seq_len, head_size]
+ if self.max_seq_len_cached is None or kv_len > self.max_seq_len_cached:
+ self._set_cos_sin_cache(seq_len=kv_len, device=x.device, dtype=x.dtype)
+
+ return (
+ self.cos_cached[:kv_len].to(dtype=x.dtype),
+ self.sin_cached[:kv_len].to(dtype=x.dtype),
+ )
+
+ def forward(self, x, kv_len, max_seq_len=None):
+ # x shape is [bs, num_attention_heads, seq_len, head_size]
+ if max_seq_len is None:
+ self._set_cos_sin_cache(seq_len=kv_len, device=x.device, dtype=x.dtype)
+ elif max_seq_len > self.max_seq_len_cached:
+ self._set_cos_sin_cache(seq_len=max_seq_len, device=x.device, dtype=x.dtype)
+
+ batch_size, seq_len, _ = x.size()
+ if seq_len == 1:
+ # BD -> BNSD
+ cos = torch.index_select(self.cos_cached, dim=0, index=kv_len).unsqueeze(1).unsqueeze(1)
+ sin = torch.index_select(self.sin_cached, dim=0, index=kv_len).unsqueeze(1).unsqueeze(1)
+ else:
+ # SD -> BSND
+ cos = self.cos_cached[:seq_len].unsqueeze(0).unsqueeze(2).repeat(batch_size, 1, 1, 1)
+ sin = self.sin_cached[:seq_len].unsqueeze(0).unsqueeze(2).repeat(batch_size, 1, 1, 1)
+
+ cos = cos[0,:,0,:]
+ sin = sin[0,:,0,:]
+ return (
+ cos.to(dtype=x.dtype),
+ sin.to(dtype=x.dtype),
+ )
+
+
+# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV3
+class DeepseekV3LinearScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
+ """DeepseekV3RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
+
+ def __init__(
+ self,
+ dim,
+ max_position_embeddings=2048,
+ base=10000,
+ device=None,
+ scaling_factor=1.0,
+ ):
+ self.scaling_factor = scaling_factor
+ super().__init__(dim, max_position_embeddings, base, device)
+
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
+ self.max_seq_len_cached = seq_len
+ t = torch.arange(
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
+ )
+ t = t / self.scaling_factor
+
+ freqs = torch.outer(t, self.inv_freq)
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
+ emb = torch.cat((freqs, freqs), dim=-1)
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
+
+
+# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV3
+class DeepseekV3DynamicNTKScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
+ """DeepseekV3RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
+
+ def __init__(
+ self,
+ dim,
+ max_position_embeddings=2048,
+ base=10000,
+ device=None,
+ scaling_factor=1.0,
+ ):
+ self.scaling_factor = scaling_factor
+ super().__init__(dim, max_position_embeddings, base, device)
+
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
+ self.max_seq_len_cached = seq_len
+
+ if seq_len > self.max_position_embeddings:
+ base = self.base * (
+ (self.scaling_factor * seq_len / self.max_position_embeddings)
+ - (self.scaling_factor - 1)
+ ) ** (self.dim / (self.dim - 2))
+ inv_freq = 1.0 / (
+ base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
+ )
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
+
+ t = torch.arange(
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
+ )
+
+ freqs = torch.outer(t, self.inv_freq)
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
+ emb = torch.cat((freqs, freqs), dim=-1)
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
+
+
+# Inverse dim formula to find dim based on number of rotations
+def yarn_find_correction_dim(
+ num_rotations, dim, base=10000, max_position_embeddings=2048
+):
+ return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
+ 2 * math.log(base)
+ )
+
+
+# Find dim range bounds based on rotations
+def yarn_find_correction_range(
+ low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
+):
+ low = math.floor(
+ yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
+ )
+ high = math.ceil(
+ yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
+ )
+ return max(low, 0), min(high, dim - 1) # Clamp values just in case
+
+
+def yarn_get_mscale(scale=1, mscale=1):
+ if scale <= 1:
+ return 1.0
+ return 0.1 * mscale * math.log(scale) + 1.0
+
+
+def yarn_linear_ramp_mask(min, max, dim):
+ if min == max:
+ max += 0.001 # Prevent singularity
+
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
+ ramp_func = torch.clamp(linear_func, 0, 1)
+ return ramp_func
+
+
+class DeepseekV3YarnRotaryEmbedding(DeepseekV3RotaryEmbedding):
+
+ def __init__(
+ self,
+ dim,
+ max_position_embeddings=2048,
+ base=10000,
+ device=None,
+ scaling_factor=1.0,
+ original_max_position_embeddings=4096,
+ beta_fast=32,
+ beta_slow=1,
+ mscale=1,
+ mscale_all_dim=0,
+ ):
+ self.scaling_factor = scaling_factor
+ self.original_max_position_embeddings = original_max_position_embeddings
+ self.beta_fast = beta_fast
+ self.beta_slow = beta_slow
+ self.mscale = mscale
+ self.mscale_all_dim = mscale_all_dim
+ super().__init__(dim, max_position_embeddings, base, device)
+
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
+ self.max_seq_len_cached = seq_len
+ dim = self.dim
+
+ freq_extra = 1.0 / (
+ self.base
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
+ )
+ freq_inter = 1.0 / (
+ self.scaling_factor
+ * self.base
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
+ )
+
+ low, high = yarn_find_correction_range(
+ self.beta_fast,
+ self.beta_slow,
+ dim,
+ self.base,
+ self.original_max_position_embeddings,
+ )
+ inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
+ device=device, dtype=torch.float32
+ )
+ inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
+
+ t = torch.arange(seq_len, device=device, dtype=torch.float32)
+
+ freqs = torch.outer(t, inv_freq)
+
+ _mscale = float(
+ yarn_get_mscale(self.scaling_factor, self.mscale)
+ / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
+ )
+
+ emb = torch.cat((freqs, freqs), dim=-1)
+ self.register_buffer(
+ "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
+ )
+ self.register_buffer(
+ "sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
+ )
+
+
+# Copied from transformers.models.llama.modeling_llama.rotate_half
+def rotate_half(x):
+ """Rotates half the hidden dims of the input."""
+ x1 = x[..., : x.shape[-1] // 2]
+ x2 = x[..., x.shape[-1] // 2 :]
+ return torch.cat((-x2, x1), dim=-1)
+
+
+# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
+def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
+ """Applies Rotary Position Embedding to the query and key tensors.
+
+ Args:
+ q (`torch.Tensor`): The query tensor.
+ k (`torch.Tensor`): The key tensor.
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
+ position_ids (`torch.Tensor`):
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
+ used to pass offsetted position ids when working with a KV-cache.
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
+ Returns:
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
+ """
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim) # BSND->BNSD
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim) # BSND->BNSD
+
+ b, h, s, d = q.shape
+ q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
+
+ b, h, s, d = k.shape
+ k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
+
+ q_embed = (q * cos) + (rotate_half(q) * sin)
+ k_embed = (k * cos) + (rotate_half(k) * sin)
+ return q_embed, k_embed
+
+
+class __DeepseekV3MLP(nn.Module):
+ def __init__(self, config, hidden_size=None, intermediate_size=None):
+ super().__init__()
+ self.config = config
+ self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
+ self.intermediate_size = (
+ config.intermediate_size if intermediate_size is None else intermediate_size
+ )
+
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
+ self.act_fn = ACT2FN[config.hidden_act]
+
+ def forward(self, x):
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
+ return down_proj
+
+class DeepseekV3MLP(nn.Module):
+ def __init__(self, config, hidden_size=None, intermediate_size=None):
+ super().__init__()
+ self.world_size = int(os.getenv("WORLD_SIZE", "1"))
+ self.config = config
+ self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
+ self.intermediate_size = (
+ config.intermediate_size if intermediate_size is None else intermediate_size
+ )
+
+ self.intermediate_size_per_rank = self.intermediate_size // self.world_size
+ self.merge_up_gate_proj = nn.Linear(self.hidden_size, self.intermediate_size_per_rank * 2, bias=False)
+ self.down_proj = nn.Linear(self.intermediate_size_per_rank, self.hidden_size, bias=False)
+ self.act_fn = ACT2FN[config.hidden_act]
+
+ def forward(self, x):
+ merged_x = self.merge_up_gate_proj(x)
+ gate_state, up_state = merged_x.chunk(2, dim=-1)
+ intermediate_hidden_states = self.act_fn(gate_state) * up_state
+ down_proj = self.down_proj(intermediate_hidden_states)
+ if self.world_size > 1:
+ dist.all_reduce(down_proj)
+ return down_proj
+
+
+class DeepseekV3MLPGMM(nn.Module):
+ def __init__(self, config, hidden_size=None, intermediate_size=None):
+ super().__init__()
+ self.config = config
+ self.world_size = int(os.getenv("WORLD_SIZE", "1"))
+ self.num_experts = config.n_routed_experts
+
+ self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
+ self.intermediate_size = (
+ config.intermediate_size if intermediate_size is None else intermediate_size
+ )
+ self.intermediate_size_per_rank = self.intermediate_size // self.world_size
+
+ self.act_fn = ACT2FN[config.hidden_act]
+
+ self.group_w1_w3 = nn.Parameter(torch.ones(self.num_experts, self.intermediate_size_per_rank * 2, self.hidden_size),
+ requires_grad=False)
+ self.group_w2 = nn.Parameter(torch.ones(self.num_experts, self.hidden_size, self.intermediate_size_per_rank),
+ requires_grad=False)
+
+ def forward(self, hidden_states, expert_tokens, seq_len=None):
+ mm1_mm3 = gmm.npu_gmm(hidden_states, torch.transpose(self.group_w1_w3, 1, 2),
+ bias=None, group_list=expert_tokens, group_type=0)
+ mm1, mm3 = mm1_mm3.chunk(2, dim=-1)
+ intermediate_hidden_states = self.act_fn(mm1) * mm3
+ hidden_states = gmm.npu_gmm(intermediate_hidden_states, torch.transpose(self.group_w2, 1, 2),
+ bias=None, group_list=expert_tokens, group_type=0)
+ return hidden_states
+
+
+def one_hot(tensor, num_classes):
+ index = torch.arange(0, num_classes, dtype=tensor.dtype, device=tensor.device)
+ return (
+ tensor.view([*tensor.shape, 1]) == index.view([1] * tensor.ndim + [num_classes])
+ ).to(torch.float32)
+
+
+class MoEGate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.top_k = config.num_experts_per_tok
+ self.n_routed_experts = config.n_routed_experts
+ self.routed_scaling_factor = config.routed_scaling_factor
+ self.scoring_func = config.scoring_func
+ self.alpha = config.aux_loss_alpha
+ self.seq_aux = config.seq_aux
+ self.topk_method = config.topk_method
+ self.n_group = config.n_group
+ self.topk_group = config.topk_group
+
+ # topk selection algorithm
+ self.norm_topk_prob = config.norm_topk_prob
+ self.gating_dim = config.hidden_size
+ self.weight = nn.Parameter(
+ torch.empty((self.n_routed_experts, self.gating_dim))
+ )
+ self.reset_parameters()
+ if self.topk_method == "noaux_tc":
+ self.e_score_correction_bias = nn.Parameter(
+ torch.empty((self.n_routed_experts))
+ )
+
+ def reset_parameters(self) -> None:
+ pass
+ # import torch.nn.init as init
+
+ # init.kaiming_uniform_(self.weight, a=math.sqrt(5))
+
+ def forward(self, hidden_states):
+ bsz, seq_len, h = hidden_states.shape
+ ### compute gating score
+ hidden_states = hidden_states.view(-1, h)
+ logits = F.linear(
+ hidden_states.to(torch.float32), self.weight.to(torch.float32), None
+ )
+ if self.scoring_func == "sigmoid":
+ scores = logits.sigmoid()
+ else:
+ raise NotImplementedError(
+ f"insupportable scoring function for MoE gating: {self.scoring_func}"
+ )
+
+ ### select top-k experts
+ if self.topk_method == "noaux_tc":
+ assert not self.training
+ scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0)
+ group_scores = (
+ scores_for_choice.view(bsz * seq_len, self.n_group, -1).topk(2, dim=-1)[0].sum(dim = -1)
+ ) # [n, n_group]
+ group_idx = torch.topk(
+ group_scores, k=self.topk_group, dim=-1, sorted=False
+ )[
+ 1
+ ] # [n, top_k_group]
+ # group_mask = torch.zeros_like(group_scores) # [n, n_group]
+ # group_mask.scatter_(1, group_idx, 1) # [n, n_group]
+ group_mask = one_hot(group_idx, self.n_group) # [n, n_group]
+ group_mask = torch.sum(group_mask, dim=1) # [n, n_group]
+ score_mask = (
+ group_mask.unsqueeze(-1)
+ .expand(
+ bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
+ )
+ .reshape(bsz * seq_len, -1)
+ ) # [n, e]
+ tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), 0.0) # [n, e]
+ _, topk_idx = torch.topk(
+ tmp_scores, k=self.top_k, dim=-1, sorted=False
+ )
+ topk_weight = scores.gather(1, topk_idx)
+ else:
+ raise NotImplementedError(
+ f"insupportable TopK function for MoE gating: {self.topk_method}"
+ )
+
+ ### norm gate to sum 1
+ if self.top_k > 1 and self.norm_topk_prob:
+ denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
+ topk_weight = topk_weight / denominator
+ topk_weight = topk_weight * self.routed_scaling_factor # must multiply the scaling factor
+
+ return topk_idx, topk_weight, None
+
+
+class AddAuxiliaryLoss(torch.autograd.Function):
+ """
+ The trick function of adding auxiliary (aux) loss,
+ which includes the gradient of the aux loss during backpropagation.
+ """
+
+ @staticmethod
+ def forward(ctx, x, loss):
+ assert loss.numel() == 1
+ ctx.dtype = loss.dtype
+ ctx.required_aux_loss = loss.requires_grad
+ return x
+
+ @staticmethod
+ def backward(ctx, grad_output):
+ grad_loss = None
+ if ctx.required_aux_loss:
+ grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
+ return grad_output, grad_loss
+
+
+class __DeepseekV3MoE(nn.Module):
+ """
+ A mixed expert module containing shared experts.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.num_experts_per_tok = config.num_experts_per_tok
+
+ if hasattr(config, "ep_size") and config.ep_size > 1:
+ assert config.ep_size == dist.get_world_size()
+ self.ep_size = config.ep_size
+ self.experts_per_rank = config.n_routed_experts // config.ep_size
+ self.ep_rank = dist.get_rank()
+ self.experts = nn.ModuleList(
+ [
+ (
+ DeepseekV3MLP(
+ config, intermediate_size=config.moe_intermediate_size
+ )
+ if i >= self.ep_rank * self.experts_per_rank
+ and i < (self.ep_rank + 1) * self.experts_per_rank
+ else None
+ )
+ for i in range(config.n_routed_experts)
+ ]
+ )
+ else:
+ self.ep_size = 1
+ self.experts_per_rank = config.n_routed_experts
+ self.ep_rank = 0
+ self.experts = nn.ModuleList(
+ [
+ DeepseekV3MLP(
+ config, intermediate_size=config.moe_intermediate_size
+ )
+ for i in range(config.n_routed_experts)
+ ]
+ )
+ self.gate = MoEGate(config)
+ if config.n_shared_experts is not None:
+ intermediate_size = config.moe_intermediate_size * config.n_shared_experts
+ self.shared_experts = DeepseekV3MLP(
+ config=config, intermediate_size=intermediate_size
+ )
+
+ def forward(self, hidden_states):
+ identity = hidden_states
+ orig_shape = hidden_states.shape
+ topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
+ flat_topk_idx = topk_idx.view(-1)
+ if self.training:
+ hidden_states = hidden_states.repeat_interleave(
+ self.num_experts_per_tok, dim=0
+ )
+ y = torch.empty_like(hidden_states)
+ for i, expert in enumerate(self.experts):
+ y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
+ y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
+ y = y.to(hidden_states.dtype).view(*orig_shape)
+ y = AddAuxiliaryLoss.apply(y, aux_loss)
+ else:
+ y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
+ if self.config.n_shared_experts is not None:
+ y = y + self.shared_experts(identity)
+ return y
+
+ @torch.no_grad()
+ def moe_infer(self, x, topk_ids, topk_weight):
+ cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
+ cnts.scatter_(1, topk_ids, 1)
+ tokens_per_expert = cnts.sum(dim=0)
+ idxs = topk_ids.view(-1).argsort()
+ sorted_tokens = x[idxs // topk_ids.shape[1]]
+ sorted_tokens_shape = sorted_tokens.shape
+ if self.ep_size > 1:
+ tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
+ tokens_per_expert_group = tokens_per_expert.new_empty(
+ tokens_per_expert.shape[0]
+ )
+ dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
+ output_splits = (
+ tokens_per_expert_group.view(self.ep_size, -1)
+ .sum(1)
+ .cpu()
+ .numpy()
+ .tolist()
+ )
+ gathered_tokens = sorted_tokens.new_empty(
+ tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
+ )
+ input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
+ dist.all_to_all(
+ list(gathered_tokens.split(output_splits)),
+ list(sorted_tokens.split(input_split_sizes)),
+ )
+ tokens_per_expert_post_gather = tokens_per_expert_group.view(
+ self.ep_size, self.experts_per_rank
+ ).sum(dim=0)
+ gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
+ s = 0
+ for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
+ gatherd_idxs[s : s + k] = i % self.experts_per_rank
+ s += k
+ gatherd_idxs = gatherd_idxs.argsort()
+ sorted_tokens = gathered_tokens[gatherd_idxs]
+ tokens_per_expert = tokens_per_expert_post_gather
+ tokens_per_expert = tokens_per_expert.cpu().numpy()
+
+ outputs = []
+ start_idx = 0
+ for i, num_tokens in enumerate(tokens_per_expert):
+ end_idx = start_idx + num_tokens
+ if num_tokens == 0:
+ continue
+ expert = self.experts[i + self.ep_rank * self.experts_per_rank]
+ tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
+ expert_out = expert(tokens_for_this_expert)
+ outputs.append(expert_out)
+ start_idx = end_idx
+
+ outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
+ if self.ep_size > 1:
+ new_x = torch.empty_like(outs)
+ new_x[gatherd_idxs] = outs
+ gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
+ dist.all_to_all(
+ list(gathered_tokens.split(input_split_sizes)),
+ list(new_x.split(output_splits)),
+ )
+ outs = gathered_tokens
+
+ new_x = torch.empty_like(outs)
+ new_x[idxs] = outs
+ final_out = (
+ new_x.view(*topk_ids.shape, -1)
+ .type(topk_weight.dtype)
+ .mul_(topk_weight.unsqueeze(dim=-1))
+ .sum(dim=1)
+ .type(new_x.dtype)
+ )
+ return final_out
+
+
+class DeepseekV3MoE(nn.Module):
+ """
+ A mixed expert module containing shared experts.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.hidden_dim = config.hidden_size
+ self.world_size = int(os.getenv("WORLD_SIZE", "1"))
+ self.batch_size_decode = int(os.getenv("BATCH_SIZE", "1"))
+ self.batch_size_prefill = 1
+ self.npu_routing_kernel = True
+ self.num_experts_per_tok = config.num_experts_per_tok
+ self.num_experts = config.n_routed_experts
+ self.top_k = config.num_experts_per_tok
+
+ self.ep_size = 1
+ self.experts_per_rank = config.n_routed_experts
+ self.ep_rank = 0
+ self.experts = DeepseekV3MLPGMM(config, intermediate_size=config.moe_intermediate_size)
+
+ self.gate = MoEGate(config)
+ if config.n_shared_experts is not None:
+ intermediate_size = config.moe_intermediate_size * config.n_shared_experts
+ self.shared_experts = DeepseekV3MLP(config, intermediate_size=intermediate_size)
+ if self.npu_routing_kernel:
+ self.row_idx_decode_len = self.batch_size_decode * self.top_k
+ self.row_idx_decode = torch.arange(
+ 0, self.row_idx_decode_len,
+ dtype=torch.int32).view(self.top_k, -1).permute(1,0).int().contiguous().npu()
+
+ def forward(self, hidden_states):
+ identity = hidden_states
+ topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
+ y = self.moe_infer(hidden_states, topk_idx, topk_weight)
+ if self.config.n_shared_experts is not None:
+ y = y + self.shared_experts(identity)
+ return y
+
+ def __get_idx_info(self, selected_experts):
+ # input_shape: selected_experts --> [bs*seq, topk]
+ selected_experts = selected_experts.view(-1)
+ selected_experts_fp32 = selected_experts.to(torch.int32).to(torch.float) # [bs*seq*topk]
+
+ # get expert_cumsum mask
+ # expert_mask shape is [bs*seq*topk, expert_num]
+ expert_mask = one_hot(selected_experts_fp32, num_classes=self.experts_per_rank)
+ # expert_tokens shape is [expert_num, ], represent token_num performed by expert_i
+ expert_tokens = torch.sum(expert_mask, dim=0)
+ expert_tokens = torch.cumsum(expert_tokens, dim=0).to(torch.int64)
+
+ # get sorted / unsort indices
+ _, sorted_indices = torch.sort(selected_experts_fp32, dim=-1)
+ sorted_indices_fp32 = sorted_indices.to(torch.int32).to(torch.float)
+ _, unsort_indices = torch.sort(sorted_indices_fp32, dim=-1)
+ return expert_tokens, sorted_indices, unsort_indices
+
+ @torch.no_grad()
+ def moe_infer(self, x, topk_ids, topk_weight):
+ if self.npu_routing_kernel:
+ return self.moe_infer_fusion(x, topk_ids, topk_weight)
+ else:
+ return self.moe_infer_normal(x, topk_ids, topk_weight)
+
+ def moe_infer_normal(self, x, topk_ids, topk_weight):
+ orig_shape = x.shape
+ x = x.view(-1, x.shape[-1])
+
+ topk_weight = topk_weight.to(x.dtype)
+ expert_tokens, sorted_indices, unsort_indices = self.__get_idx_info(topk_ids)
+
+ # get hid states
+ hidden_states = x[:, None, ...].repeat((1, self.top_k, 1)).view((-1, x.shape[-1])) # [bs*seq*topk, hidden_size]
+ hidden_states_sorted_by_experts = torch.index_select(hidden_states, 0, sorted_indices)
+
+ # hidden_states_sorted_by_experts shape is [bs*seq*topk, hidden_size]
+ hidden_states_sorted_by_experts = self.experts(hidden_states_sorted_by_experts, expert_tokens, seq_len=orig_shape[1])
+
+ # hidden_states shape is [bs*seq*topk, hidden_size]
+ hidden_states = torch.index_select(hidden_states_sorted_by_experts, 0, unsort_indices)
+ # hidden_states shape is [bs*seq, topk, hidden_size]
+ hidden_states = hidden_states.view(-1, self.top_k, x.shape[-1])
+ # hidden_states shape is [bs*seq, topk, hidden_size]
+ hidden_states = hidden_states * topk_weight.unsqueeze(-1)
+ # hidden_states shape is [bs*seq, hidden_size]
+ hidden_states = torch.sum(hidden_states, dim=1)
+
+ if self.world_size > 1:
+ dist.all_reduce(hidden_states)
+ hidden_states = hidden_states.view(*orig_shape)
+ return hidden_states
+
+ def moe_infer_fusion(self, x, topk_ids, topk_weight):
+ batch_size, sequence_length, h = x.shape
+ hidden_states = x.view(-1, x.shape[-1])
+
+ routing_weights = topk_weight.to(x.dtype)
+ expert_idx = topk_ids.int()
+ if sequence_length == 1:
+ row_idx = self.row_idx_decode
+ else:
+ row_idx_prefill_len = self.batch_size_prefill * sequence_length * self.top_k
+ row_idx_prefill = torch.arange(
+ 0, row_idx_prefill_len, dtype=torch.int32,
+ device=topk_weight.device).view(self.top_k, -1).permute(1,0).int().contiguous()
+ row_idx = row_idx_prefill
+
+ expanded_x, expanded_row_idx, expanded_expert_idx = torch_npu.npu_moe_init_routing(
+ hidden_states,
+ row_idx=row_idx,
+ expert_idx=expert_idx,
+ active_num=batch_size*sequence_length
+ )
+
+ expert_tokens = torch_npu.npu_moe_compute_expert_tokens(expanded_expert_idx, self.num_experts)
+ expert_tokens = expert_tokens.to(torch.int64)
+
+ hidden_states_ordered_by_experts = self.experts(expanded_x, expert_tokens, seq_len=sequence_length)
+
+ hidden_states = torch_npu.npu_moe_finalize_routing(
+ hidden_states_ordered_by_experts,
+ skip1=None, skip2=None,
+ bias=None,
+ scales=routing_weights,
+ expanded_src_to_dst_row=expanded_row_idx,
+ export_for_source_row=expert_idx
+ )
+
+ if self.world_size > 1:
+ dist.all_reduce(hidden_states)
+ hidden_states = hidden_states.view(batch_size, -1, self.hidden_dim)
+ return hidden_states
+
+
+# Copied from transformers.models.llama.modeling_llama.repeat_kv
+def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
+ """
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
+ """
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
+ if n_rep == 1:
+ return hidden_states
+ hidden_states = hidden_states[:, :, None, :, :].expand(
+ batch, num_key_value_heads, n_rep, slen, head_dim
+ )
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
+
+
+def _init_rope(self):
+ if self.config.rope_scaling is None:
+ self.rotary_emb = DeepseekV3RotaryEmbedding(
+ self.config.qk_rope_head_dim,
+ max_position_embeddings=self.config.max_position_embeddings,
+ base=self.config.rope_theta,
+ )
+ else:
+ scaling_type = self.config.rope_scaling["type"]
+ scaling_factor = self.config.rope_scaling["factor"]
+ if scaling_type == "linear":
+ self.rotary_emb = DeepseekV3LinearScalingRotaryEmbedding(
+ self.config.qk_rope_head_dim,
+ max_position_embeddings=self.config.max_position_embeddings,
+ scaling_factor=scaling_factor,
+ base=self.config.rope_theta,
+ )
+ elif scaling_type == "dynamic":
+ self.rotary_emb = DeepseekV3DynamicNTKScalingRotaryEmbedding(
+ self.config.qk_rope_head_dim,
+ max_position_embeddings=self.config.max_position_embeddings,
+ scaling_factor=scaling_factor,
+ base=self.config.rope_theta,
+ )
+ elif scaling_type == "yarn":
+ kwargs = {
+ key: self.config.rope_scaling[key]
+ for key in [
+ "original_max_position_embeddings",
+ "beta_fast",
+ "beta_slow",
+ "mscale",
+ "mscale_all_dim",
+ ]
+ if key in self.config.rope_scaling
+ }
+ self.rotary_emb = DeepseekV3YarnRotaryEmbedding(
+ self.config.qk_rope_head_dim,
+ max_position_embeddings=self.config.max_position_embeddings,
+ scaling_factor=scaling_factor,
+ base=self.config.rope_theta,
+ **kwargs,
+ )
+ else:
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
+
+
+# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV3
+class DeepseekV3Attention(nn.Module):
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+ def __init__(self, config: DeepseekV3Config, layer_idx: Optional[int] = None):
+ super().__init__()
+ self.world_size = int(os.getenv("WORLD_SIZE", "1"))
+ self.config = config
+ self.layer_idx = layer_idx
+ if layer_idx is None:
+ logger.warning_once(
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
+ "when creating this class."
+ )
+
+ self.attention_dropout = config.attention_dropout
+ self.hidden_size = config.hidden_size
+ self.num_heads = config.num_attention_heads
+ self.num_heads_per_rank = self.num_heads // self.world_size
+ self.num_key_value_heads_per_rank = self.num_heads_per_rank
+
+ self.max_position_embeddings = config.max_position_embeddings
+ self.rope_theta = config.rope_theta
+ self.q_lora_rank = config.q_lora_rank
+ self.qk_rope_head_dim = config.qk_rope_head_dim
+ self.kv_lora_rank = config.kv_lora_rank
+ self.v_head_dim = config.v_head_dim
+ self.qk_nope_head_dim = config.qk_nope_head_dim
+ self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
+
+ self.is_causal = True
+
+ if self.q_lora_rank is None:
+ self.q_proj = nn.Linear(
+ self.hidden_size, self.num_heads_per_rank * self.q_head_dim, bias=False
+ )
+ else:
+ self.q_a_proj = nn.Linear(
+ self.hidden_size, config.q_lora_rank, bias=config.attention_bias
+ )
+ self.q_a_layernorm = DeepseekV3RMSNorm(config.q_lora_rank)
+ self.q_b_proj = nn.Linear(
+ config.q_lora_rank, self.num_heads_per_rank * self.q_head_dim, bias=False
+ )
+
+ self.kv_a_proj_with_mqa = nn.Linear(
+ self.hidden_size,
+ config.kv_lora_rank + config.qk_rope_head_dim,
+ bias=config.attention_bias,
+ )
+ self.kv_a_layernorm = DeepseekV3RMSNorm(config.kv_lora_rank)
+
+ self.kv_b_proj_w_k = nn.Parameter(
+ torch.zeros(self.num_heads_per_rank, self.qk_nope_head_dim, self.kv_lora_rank)
+ )
+ self.kv_b_proj_w_v = nn.Parameter(
+ torch.zeros(self.num_heads_per_rank, self.kv_lora_rank, self.v_head_dim)
+ )
+
+ self.o_proj = nn.Linear(
+ self.num_heads_per_rank * self.v_head_dim,
+ self.hidden_size,
+ bias=config.attention_bias,
+ )
+
+ self.softmax_scale = self.q_head_dim ** (-0.5)
+ if self.config.rope_scaling is not None:
+ mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
+ scaling_factor = self.config.rope_scaling["factor"]
+ if mscale_all_dim:
+ mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
+ self.softmax_scale = self.softmax_scale * mscale * mscale
+
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
+ return (
+ tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
+ .transpose(1, 2)
+ .contiguous()
+ )
+
+ def _bmm(self, x, y):
+ b, s, n, _, d = x.shape
+ x = x.view(b*s, n, d).transpose(0,1) # n, bs, d
+ output = torch.matmul(x, y) # n, bs, rank
+ output = output.transpose(1, 0).view(b, s, n, -1)
+ return output
+
+ def __prepare_qkv(
+ self,
+ hidden_states: torch.Tensor,
+ cos_sin: torch.Tensor = None,
+ kv_len: torch.IntTensor = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Cache] = None,
+ **kwargs,
+ ):
+ bsz, q_len, _ = hidden_states.size()
+
+ if self.q_lora_rank is None:
+ q = self.q_proj(hidden_states)
+ else:
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
+
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
+ compressed_kv, k_pe = torch.split(
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
+ )
+
+ q = q.view(bsz, q_len, self.num_heads_per_rank, self.q_head_dim)
+ q_nope, q_pe = torch.split(
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
+ )
+ q_pe = q_pe.transpose(1, 2)
+ q_nope = self._bmm(
+ q_nope.view(bsz, q_len, self.num_heads_per_rank, 1, self.qk_nope_head_dim),
+ self.kv_b_proj_w_k
+ )
+ q_nope = q_nope.view(bsz, q_len, self.num_heads_per_rank, self.kv_lora_rank)
+ q_nope = q_nope.transpose(1, 2)
+
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
+ k_nope = (
+ self.kv_a_layernorm(compressed_kv)
+ .view(bsz, -1, 1, self.kv_lora_rank)
+ .transpose(1, 2)
+ ) # (bs, 1, q_len, kv_lora_rank)
+
+ # rope
+ cos, sin = cos_sin
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
+
+ query_states = torch.cat([q_nope, q_pe], dim=-1)
+ key_states = torch.cat([k_nope, k_pe], dim=-1)
+
+ kv_seq_len = k_nope.shape[-2]
+ if past_key_value is not None:
+ past_key_states = past_key_value[self.layer_idx][0]
+ torch_npu.scatter_update_(past_key_states, kv_len, key_states, -2)
+ if q_len == 1:
+ key_states = past_key_states
+ kv_seq_len = past_key_value[0][0].size()[-2]
+ value_states = key_states
+ return query_states, key_states, value_states, kv_seq_len
+
+ def __apply_attention_npu(
+ self,
+ query_states, key_states, value_states, kv_seq_len,
+ attention_mask: Optional[torch.Tensor] = None,
+ actual_seq_lengths_kv: list = None,
+ output_attentions: bool = False,
+ past_key_value: Optional[Cache] = None,
+ ):
+ # repeat k/v heads if n_kv_heads < n_heads
+ bsz, _, q_len, _ = query_states.size()
+ attn_weights = (
+ torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale
+ )
+ assert attention_mask is not None
+ if attention_mask is not None:
+ attn_weights = attn_weights + attention_mask
+
+ # upcast attention to fp32
+ attn_weights = nn.functional.softmax(
+ attn_weights, dim=-1, dtype=torch.float32
+ ).to(query_states.dtype)
+ attn_weights = nn.functional.dropout(
+ attn_weights, p=self.attention_dropout, training=self.training
+ )
+ value_states = value_states[..., :self.kv_lora_rank]
+ attn_output = torch.matmul(attn_weights, value_states)
+
+ # kv rank opt
+ attn_output = attn_output.transpose(1, 2).contiguous()
+ attn_output = self._bmm(
+ attn_output.unsqueeze(3),
+ self.kv_b_proj_w_v
+ ) # (bs, q_len, num_heads, kv_lora_rank)
+ attn_output = self.o_proj(attn_output.reshape(bsz, q_len, -1))
+ if self.world_size > 1:
+ dist.all_reduce(attn_output)
+ return attn_output
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ kv_len: torch.IntTensor = None,
+ actual_seq_lengths_kv: list = None,
+ cos_sin: torch.Tensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Cache] = None,
+ output_attentions: bool = False,
+ use_cache: bool = False,
+ **kwargs,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ if "padding_mask" in kwargs:
+ warnings.warn(
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
+ )
+ query_states, key_states, value_states, kv_seq_len = self.__prepare_qkv(
+ hidden_states=hidden_states,
+ cos_sin=cos_sin,
+ kv_len=kv_len,
+ position_ids=position_ids,
+ past_key_value=past_key_value
+ )
+ output = self.__apply_attention_npu(
+ query_states=query_states, key_states=key_states, value_states=value_states,
+ kv_seq_len=kv_seq_len,
+ actual_seq_lengths_kv=actual_seq_lengths_kv,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ past_key_value=past_key_value
+ )
+ return output
+
+ def __forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Cache] = None,
+ output_attentions: bool = False,
+ use_cache: bool = False,
+ **kwargs,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ if "padding_mask" in kwargs:
+ warnings.warn(
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
+ )
+ bsz, q_len, _ = hidden_states.size()
+
+ if self.q_lora_rank is None:
+ q = self.q_proj(hidden_states)
+ else:
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
+ q_nope, q_pe = torch.split(
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
+ )
+
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
+ compressed_kv, k_pe = torch.split(
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
+ )
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
+ kv = (
+ self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
+ .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
+ .transpose(1, 2)
+ )
+
+ k_nope, value_states = torch.split(
+ kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
+ )
+ kv_seq_len = value_states.shape[-2]
+ if past_key_value is not None:
+ if self.layer_idx is None:
+ raise ValueError(
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
+ "with a layer index."
+ )
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
+
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
+
+ query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
+ query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
+ query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
+
+ key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
+ key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
+ key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
+ if past_key_value is not None:
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
+ key_states, value_states = past_key_value.update(
+ key_states, value_states, self.layer_idx, cache_kwargs
+ )
+
+ attn_weights = (
+ torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale
+ )
+
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
+ raise ValueError(
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
+ f" {attn_weights.size()}"
+ )
+ assert attention_mask is not None
+ if attention_mask is not None:
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
+ raise ValueError(
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
+ )
+ attn_weights = attn_weights + attention_mask
+
+ # upcast attention to fp32
+ attn_weights = nn.functional.softmax(
+ attn_weights, dim=-1, dtype=torch.float32
+ ).to(query_states.dtype)
+ attn_weights = nn.functional.dropout(
+ attn_weights, p=self.attention_dropout, training=self.training
+ )
+ attn_output = torch.matmul(attn_weights, value_states)
+
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.transpose(1, 2).contiguous()
+
+ attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
+
+ attn_output = self.o_proj(attn_output)
+
+ if not output_attentions:
+ attn_weights = None
+
+ return attn_output, attn_weights, past_key_value
+
+
+# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV3
+class DeepseekV3FlashAttention2(DeepseekV3Attention):
+ """
+ DeepseekV3 flash attention module. This module inherits from `DeepseekV3Attention` as the weights of the module stays
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
+ flash attention and deal with padding tokens in case the input contains any of them.
+ """
+
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Cache] = None,
+ output_attentions: bool = False,
+ use_cache: bool = False,
+ **kwargs,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ # DeepseekV3FlashAttention2 attention does not support output_attentions
+ if "padding_mask" in kwargs:
+ warnings.warn(
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
+ )
+
+ # overwrite attention_mask with padding_mask
+ attention_mask = kwargs.pop("padding_mask")
+
+ output_attentions = False
+
+ bsz, q_len, _ = hidden_states.size()
+
+ if self.q_lora_rank is None:
+ q = self.q_proj(hidden_states)
+ else:
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
+ q_nope, q_pe = torch.split(
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
+ )
+
+ # Flash attention requires the input to have the shape
+ # batch_size x seq_length x head_dim x hidden_dim
+ # therefore we just need to keep the original shape
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
+ compressed_kv, k_pe = torch.split(
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
+ )
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
+ kv = (
+ self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
+ .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
+ .transpose(1, 2)
+ )
+
+ k_nope, value_states = torch.split(
+ kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
+ )
+ kv_seq_len = value_states.shape[-2]
+
+ kv_seq_len = value_states.shape[-2]
+ if past_key_value is not None:
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
+
+ cos, sin = self.rotary_emb(value_states, kv_len=kv_seq_len)
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
+
+ query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
+ query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
+ query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
+
+ key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
+ key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
+ key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
+
+ if self.q_head_dim != self.v_head_dim:
+ value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
+
+ if past_key_value is not None:
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
+ key_states, value_states = past_key_value.update(
+ key_states, value_states, self.layer_idx, cache_kwargs
+ )
+
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
+ # to be able to avoid many of these transpose/reshape/view.
+ query_states = query_states.transpose(1, 2)
+ key_states = key_states.transpose(1, 2)
+ value_states = value_states.transpose(1, 2)
+
+ dropout_rate = self.attention_dropout if self.training else 0.0
+
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
+ # cast them back in the correct dtype just to be sure everything works as expected.
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
+ # in fp32. (DeepseekV3RMSNorm handles it correctly)
+
+ input_dtype = query_states.dtype
+ if input_dtype == torch.float32:
+ # Handle the case where the model is quantized
+ if hasattr(self.config, "_pre_quantization_dtype"):
+ target_dtype = self.config._pre_quantization_dtype
+ elif torch.is_autocast_enabled():
+ target_dtype = torch.get_autocast_gpu_dtype()
+ else:
+ target_dtype = (
+ self.q_proj.weight.dtype
+ if self.q_lora_rank is None
+ else self.q_a_proj.weight.dtype
+ )
+
+ logger.warning_once(
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
+ f" {target_dtype}."
+ )
+
+ query_states = query_states.to(target_dtype)
+ key_states = key_states.to(target_dtype)
+ value_states = value_states.to(target_dtype)
+
+ attn_output = self._flash_attention_forward(
+ query_states,
+ key_states,
+ value_states,
+ attention_mask,
+ q_len,
+ dropout=dropout_rate,
+ softmax_scale=self.softmax_scale,
+ )
+ if self.q_head_dim != self.v_head_dim:
+ attn_output = attn_output[:, :, :, : self.v_head_dim]
+
+ attn_output = attn_output.reshape(
+ bsz, q_len, self.num_heads * self.v_head_dim
+ ).contiguous()
+ attn_output = self.o_proj(attn_output)
+
+ if not output_attentions:
+ attn_weights = None
+
+ return attn_output, attn_weights, past_key_value
+
+ def _flash_attention_forward(
+ self,
+ query_states,
+ key_states,
+ value_states,
+ attention_mask,
+ query_length,
+ dropout=0.0,
+ softmax_scale=None,
+ ):
+ """
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
+ first unpad the input, then computes the attention scores and pad the final attention scores.
+
+ Args:
+ query_states (`torch.Tensor`):
+ Input query states to be passed to Flash Attention API
+ key_states (`torch.Tensor`):
+ Input key states to be passed to Flash Attention API
+ value_states (`torch.Tensor`):
+ Input value states to be passed to Flash Attention API
+ attention_mask (`torch.Tensor`):
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
+ position of padding tokens and 1 for the position of non-padding tokens.
+ dropout (`int`, *optional*):
+ Attention dropout
+ softmax_scale (`float`, *optional*):
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
+ """
+ if not self._flash_attn_uses_top_left_mask:
+ causal = self.is_causal
+ else:
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV3FlashAttention2 __init__.
+ causal = self.is_causal and query_length != 1
+
+ # Contains at least one padding token in the sequence
+ if attention_mask is not None:
+ batch_size = query_states.shape[0]
+ (
+ query_states,
+ key_states,
+ value_states,
+ indices_q,
+ cu_seq_lens,
+ max_seq_lens,
+ ) = self._upad_input(
+ query_states, key_states, value_states, attention_mask, query_length
+ )
+
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
+
+ attn_output_unpad = flash_attn_varlen_func(
+ query_states,
+ key_states,
+ value_states,
+ cu_seqlens_q=cu_seqlens_q,
+ cu_seqlens_k=cu_seqlens_k,
+ max_seqlen_q=max_seqlen_in_batch_q,
+ max_seqlen_k=max_seqlen_in_batch_k,
+ dropout_p=dropout,
+ softmax_scale=softmax_scale,
+ causal=causal,
+ )
+
+ attn_output = pad_input(
+ attn_output_unpad, indices_q, batch_size, query_length
+ )
+ else:
+ attn_output = flash_attn_func(
+ query_states,
+ key_states,
+ value_states,
+ dropout,
+ softmax_scale=softmax_scale,
+ causal=causal,
+ )
+
+ return attn_output
+
+ def _upad_input(
+ self, query_layer, key_layer, value_layer, attention_mask, query_length
+ ):
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
+
+ key_layer = index_first_axis(
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
+ indices_k,
+ )
+ value_layer = index_first_axis(
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
+ indices_k,
+ )
+ if query_length == kv_seq_len:
+ query_layer = index_first_axis(
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
+ indices_k,
+ )
+ cu_seqlens_q = cu_seqlens_k
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
+ indices_q = indices_k
+ elif query_length == 1:
+ max_seqlen_in_batch_q = 1
+ cu_seqlens_q = torch.arange(
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
+ ) # There is a memcpy here, that is very bad.
+ indices_q = cu_seqlens_q[:-1]
+ query_layer = query_layer.squeeze(1)
+ else:
+ # The -q_len: slice assumes left padding.
+ attention_mask = attention_mask[:, -query_length:]
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
+ query_layer, attention_mask
+ )
+
+ return (
+ query_layer,
+ key_layer,
+ value_layer,
+ indices_q,
+ (cu_seqlens_q, cu_seqlens_k),
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
+ )
+
+
+ATTENTION_CLASSES = {
+ "eager": DeepseekV3Attention,
+ "flash_attention_2": DeepseekV3FlashAttention2,
+}
+
+
+class DeepseekV3DecoderLayer(nn.Module):
+ def __init__(self, config: DeepseekV3Config, layer_idx: int):
+ super().__init__()
+ self.hidden_size = config.hidden_size
+
+ self.self_attn = ATTENTION_CLASSES[config._attn_implementation](
+ config=config, layer_idx=layer_idx
+ )
+
+ self.mlp = (
+ DeepseekV3MoE(config)
+ if (
+ config.n_routed_experts is not None
+ and layer_idx >= config.first_k_dense_replace
+ and layer_idx % config.moe_layer_freq == 0
+ )
+ else DeepseekV3MLP(config)
+ )
+ self.input_layernorm = DeepseekV3RMSNorm(
+ config.hidden_size, eps=config.rms_norm_eps
+ )
+ self.post_attention_layernorm = DeepseekV3RMSNorm(
+ config.hidden_size, eps=config.rms_norm_eps
+ )
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ kv_len: torch.IntTensor,
+ actual_seq_lengths_kv: list,
+ cos_sin: torch.Tensor,
+ past_residual: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ **kwargs,
+ ) -> Tuple[torch.FloatTensor]:
+ hidden_states, residual = self.input_layernorm(hidden_states, past_residual)
+
+ # Self Attention
+ hidden_states = self.self_attn(
+ hidden_states=hidden_states,
+ kv_len=kv_len,
+ actual_seq_lengths_kv=actual_seq_lengths_kv,
+ cos_sin=cos_sin,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_value,
+ )
+
+ # Fully Connected
+ hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
+ hidden_states = self.mlp(hidden_states)
+
+ outputs = (residual, hidden_states)
+ return outputs
+
+
+DeepseekV3_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`DeepseekV3Config`]):
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
+ load the weights associated with the model, only the configuration. Check out the
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+
+@add_start_docstrings(
+ "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
+ DeepseekV3_START_DOCSTRING,
+)
+class DeepseekV3PreTrainedModel(PreTrainedModel):
+ config_class = DeepseekV3Config
+ base_model_prefix = "model"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["DeepseekV3DecoderLayer"]
+ _skip_keys_device_placement = "past_key_values"
+ _supports_flash_attn_2 = True
+ _supports_cache_class = True
+
+ def _init_weights(self, module):
+ pass
+ # std = self.config.initializer_range
+ # if isinstance(module, nn.Linear):
+ # module.weight.data.normal_(mean=0.0, std=std)
+ # if module.bias is not None:
+ # module.bias.data.zero_()
+ # elif isinstance(module, nn.Embedding):
+ # module.weight.data.normal_(mean=0.0, std=std)
+ # if module.padding_idx is not None:
+ # module.weight.data[module.padding_idx].zero_()
+
+
+DeepseekV3_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
+ `past_key_values`).
+
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
+ information on the default strategy.
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.n_positions - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
+
+ Two formats are allowed:
+ - a [`~cache_utils.Cache`] instance;
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
+ cache format.
+
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
+ legacy cache format will be returned.
+
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
+ of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
+ DeepseekV3_START_DOCSTRING,
+)
+class DeepseekV3Model(DeepseekV3PreTrainedModel):
+ """
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV3DecoderLayer`]
+
+ Args:
+ config: DeepseekV3Config
+ """
+
+ def __init__(self, config: DeepseekV3Config):
+ super().__init__(config)
+ self.config = config
+ self.rank_id = int(os.getenv("LOCAL_RANK", "0"))
+ self.world_size = int(os.getenv("WORLD_SIZE", "1"))
+ self.padding_idx = config.pad_token_id
+ self.vocab_size = config.vocab_size
+ self.vocab_size_per_rank = self.vocab_size // self.world_size
+
+ self.embed_tokens = nn.Embedding(
+ self.vocab_size_per_rank, config.hidden_size, self.padding_idx
+ )
+ self.layers = nn.ModuleList(
+ [
+ DeepseekV3DecoderLayer(config, layer_idx)
+ for layer_idx in range(config.num_hidden_layers)
+ ]
+ )
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
+ self.norm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+
+ self.gradient_checkpointing = False
+ # Initialize weights and apply final processing
+ self.post_init()
+ _init_rope(self)
+
+ def get_input_embeddings(self):
+ return self.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.embed_tokens = value
+
+ def __forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
+ output_attentions = (
+ output_attentions
+ if output_attentions is not None
+ else self.config.output_attentions
+ )
+ output_hidden_states = (
+ output_hidden_states
+ if output_hidden_states is not None
+ else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+
+ return_dict = (
+ return_dict if return_dict is not None else self.config.use_return_dict
+ )
+
+ # retrieve input_ids and inputs_embeds
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError(
+ "You cannot specify both input_ids and inputs_embeds at the same time"
+ )
+ elif input_ids is not None:
+ batch_size, seq_length = input_ids.shape[:2]
+ elif inputs_embeds is not None:
+ batch_size, seq_length = inputs_embeds.shape[:2]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ past_key_values_length = 0
+ if use_cache:
+ use_legacy_cache = not isinstance(past_key_values, Cache)
+ if use_legacy_cache:
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
+
+ if position_ids is None:
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+ position_ids = torch.arange(
+ past_key_values_length,
+ seq_length + past_key_values_length,
+ dtype=torch.long,
+ device=device,
+ )
+ position_ids = position_ids.unsqueeze(0)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.embed_tokens(input_ids)
+
+ if self._use_flash_attention_2:
+ # 2d mask is passed through the layers
+ attention_mask = (
+ attention_mask
+ if (attention_mask is not None and 0 in attention_mask)
+ else None
+ )
+ else:
+ # 4d mask is passed through the layers
+ attention_mask = _prepare_4d_causal_attention_mask(
+ attention_mask,
+ (batch_size, seq_length),
+ inputs_embeds,
+ past_key_values_length,
+ )
+
+ # embed positions
+ hidden_states = inputs_embeds
+
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ next_decoder_cache = None
+
+ for decoder_layer in self.layers:
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ layer_outputs = decoder_layer(
+ hidden_states,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_values,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if use_cache:
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
+
+ if output_attentions:
+ all_self_attns += (layer_outputs[1],)
+
+ hidden_states = self.norm(hidden_states)
+
+ # add hidden states from the last decoder layer
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ next_cache = None
+ if use_cache:
+ next_cache = (
+ next_decoder_cache.to_legacy_cache()
+ if use_legacy_cache
+ else next_decoder_cache
+ )
+ if not return_dict:
+ return tuple(
+ v
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
+ if v is not None
+ )
+ return BaseModelOutputWithPast(
+ last_hidden_state=hidden_states,
+ past_key_values=next_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ )
+
+ @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_ids: torch.LongTensor,
+ kv_len: torch.IntTensor = None,
+ actual_seq_lengths_kv: list = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ ):
+
+ batch_size, seq_length = input_ids.shape
+ past_key_values_length = past_key_values[0][0].size()[-2]
+
+ if position_ids is None:
+ device = input_ids.device
+ position_ids = torch.arange(
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
+ )
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
+ else:
+ position_ids = position_ids.view(-1, seq_length).long()
+
+ if self.world_size > 1:
+ new_input_ids = input_ids - self.rank_id * self.vocab_size_per_rank
+ mask = (new_input_ids >= 0) & (new_input_ids < self.vocab_size_per_rank) # (bs, qlen)
+ new_input_ids_per_rank = new_input_ids * mask
+ inputs_embeds = self.embed_tokens(new_input_ids_per_rank) * mask.unsqueeze(-1)
+ dist.all_reduce(inputs_embeds)
+ else:
+ inputs_embeds = self.embed_tokens(input_ids)
+ hidden_states = inputs_embeds
+
+ cos_sin = self.rotary_emb(hidden_states, kv_len, self.config.max_position_embeddings)
+ residual = None
+
+ for decoder_layer in self.layers:
+ residual, hidden_states = decoder_layer(
+ hidden_states,
+ kv_len,
+ actual_seq_lengths_kv,
+ cos_sin=cos_sin,
+ past_residual=residual,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_values
+ )
+
+ hidden_states, _ = self.norm(hidden_states, residual)
+
+ return hidden_states
+
+
+class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel):
+ _tied_weights_keys = ["lm_head.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.config = config
+ self.input_max_len = int(os.getenv("INPUT_MAX_LEN", 1024))
+ self.world_size = int(os.getenv("WORLD_SIZE", "1"))
+ self.model = DeepseekV3Model(config)
+ self.vocab_size = config.vocab_size
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size // self.world_size, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.embed_tokens = value
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def set_decoder(self, decoder):
+ self.model = decoder
+
+ def get_decoder(self):
+ return self.model
+
+ def __forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
+ r"""
+ Args:
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
+ Returns:
+ Example:
+ ```python
+ >>> from transformers import AutoTokenizer, DeepseekV3ForCausalLM
+ >>> model = DeepseekV3ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
+ >>> # Generate
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
+ ```"""
+ output_attentions = (
+ output_attentions
+ if output_attentions is not None
+ else self.config.output_attentions
+ )
+ output_hidden_states = (
+ output_hidden_states
+ if output_hidden_states is not None
+ else self.config.output_hidden_states
+ )
+ return_dict = (
+ return_dict if return_dict is not None else self.config.use_return_dict
+ )
+
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+ outputs = self.model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ logits = self.lm_head(hidden_states)
+ logits = logits.float()
+
+ loss = None
+ if labels is not None:
+ # Shift so that tokens < n predict n
+ shift_logits = logits[..., :-1, :].contiguous()
+ shift_labels = labels[..., 1:].contiguous()
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss()
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
+ shift_labels = shift_labels.view(-1)
+ # Enable model parallelism
+ shift_labels = shift_labels.to(shift_logits.device)
+ loss = loss_fct(shift_logits, shift_labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return (loss,) + output if loss is not None else output
+
+ return CausalLMOutputWithPast(
+ loss=loss,
+ logits=logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ # @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
+ # @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ kv_len: torch.IntTensor = None,
+ actual_seq_lengths_kv: list = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ ):
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+ outputs = self.model(
+ input_ids=input_ids,
+ kv_len=kv_len,
+ actual_seq_lengths_kv=actual_seq_lengths_kv,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ )
+
+ hidden_states = outputs
+
+ if hidden_states.size()[1] > 1:
+ gather_index, _ = torch.max(position_ids, dim=-1)
+ gather_index = gather_index.unsqueeze(1).unsqueeze(2).repeat(1, 1, hidden_states.shape[-1])
+ hidden_states = torch.gather(hidden_states, 1, gather_index)
+
+ logits = self.lm_head(hidden_states)
+ if self.world_size > 1:
+ new_logits = [logits.clone().detach() for _ in range(self.world_size)]
+ dist.all_gather(new_logits, logits)
+ logits = torch.cat(new_logits, dim=-1)
+ logits = logits.float()
+
+ return logits
+
+ def init_cache(
+ self,
+ input_ids,
+ world_size=1,
+ ):
+ batch_size, seq_len = input_ids.size()
+
+ cache_seq_len = self.config.max_position_embeddings
+
+ past_key_values = ()
+ cache_key_shape = (
+ batch_size,
+ 1,
+ cache_seq_len,
+ self.config.kv_lora_rank + self.config.qk_rope_head_dim
+ )
+ dtype = self.config.torch_dtype
+
+ for i in range(self.config.num_hidden_layers):
+ key_cache = torch.zeros(cache_key_shape, dtype=dtype, device=input_ids.device)
+ past_key_values += ((key_cache, ),)
+
+ return past_key_values
+
+ def prepare_inputs_for_generation(
+ self,
+ input_ids,
+ past_key_values=None,
+ attention_mask=None,
+ inputs_embeds=None,
+ is_prefill=None,
+ kv_len=None,
+ share_mask_tril=None,
+ world_size=1,
+ **kwargs
+ ):
+ batch_size, seq_len = input_ids.size()
+ if past_key_values is None:
+ past_key_values = self.init_cache(input_ids, world_size)
+ if is_prefill:
+ position_ids = attention_mask.long().cumsum(-1) - 1
+ position_ids.masked_fill_(attention_mask == 0, 1)
+ attention_mask = share_mask_tril
+ kv_len = torch.zeros((position_ids.size()[0]), dtype=torch.int32, device=input_ids.device)
+ actual_seq_lengths_kv = None
+ else:
+ attention_mask = None
+ position_ids = kv_len.unsqueeze(1)
+ actual_seq_lengths_kv = (kv_len + 1).cpu().detach().numpy().tolist()
+
+ # attention_mask set
+ if is_prefill:
+ past_key_values_length = 0
+ sliding_window = self.input_max_len
+ input_mask = None
+ else:
+ past_key_values_length = self.config.max_position_embeddings - seq_len
+ sliding_window = min(self.config.max_position_embeddings, kwargs.get("input_lens"))
+ input_mask = share_mask_tril
+
+ attention_mask = _prepare_4d_causal_attention_mask(
+ input_mask,
+ (batch_size, seq_len),
+ input_ids.float(),
+ past_key_values_length,
+ sliding_window
+ )
+
+ model_inputs = {}
+ model_inputs.update(
+ {
+ "input_ids": input_ids,
+ "position_ids": position_ids,
+ "past_key_values": past_key_values,
+ "attention_mask": attention_mask,
+ "kv_len": kv_len,
+ "actual_seq_lengths_kv": actual_seq_lengths_kv
+ }
+ )
+ return model_inputs
+
+ def __prepare_inputs_for_generation(
+ self,
+ input_ids,
+ past_key_values=None,
+ attention_mask=None,
+ inputs_embeds=None,
+ **kwargs,
+ ):
+ if past_key_values is not None:
+ if isinstance(past_key_values, Cache):
+ cache_length = past_key_values.get_seq_length()
+ past_length = past_key_values.seen_tokens
+ max_cache_length = past_key_values.get_max_length()
+ else:
+ cache_length = past_length = past_key_values[0][0].shape[2]
+ max_cache_length = None
+
+ # Keep only the unprocessed tokens:
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
+ # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
+ # input)
+ if (
+ attention_mask is not None
+ and attention_mask.shape[1] > input_ids.shape[1]
+ ):
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
+ # input_ids based on the past_length.
+ elif past_length < input_ids.shape[1]:
+ input_ids = input_ids[:, past_length:]
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
+
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
+ if (
+ max_cache_length is not None
+ and attention_mask is not None
+ and cache_length + input_ids.shape[1] > max_cache_length
+ ):
+ attention_mask = attention_mask[:, -max_cache_length:]
+
+ position_ids = kwargs.get("position_ids", None)
+ if attention_mask is not None and position_ids is None:
+ # create position_ids on the fly for batch generation
+ position_ids = attention_mask.long().cumsum(-1) - 1
+ position_ids.masked_fill_(attention_mask == 0, 1)
+ if past_key_values:
+ position_ids = position_ids[:, -input_ids.shape[1] :]
+
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
+ if inputs_embeds is not None and past_key_values is None:
+ model_inputs = {"inputs_embeds": inputs_embeds}
+ else:
+ model_inputs = {"input_ids": input_ids}
+
+ model_inputs.update(
+ {
+ "position_ids": position_ids,
+ "past_key_values": past_key_values,
+ "use_cache": kwargs.get("use_cache"),
+ "attention_mask": attention_mask,
+ }
+ )
+ return model_inputs
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ reordered_past += (
+ tuple(
+ past_state.index_select(0, beam_idx.to(past_state.device))
+ for past_state in layer_past
+ ),
+ )
+ return reordered_past
+
+
+@add_start_docstrings(
+ """
+ The DeepseekV3 Model transformer with a sequence classification head on top (linear layer).
+
+ [`DeepseekV3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
+ (e.g. GPT-2) do.
+
+ Since it does classification on the last token, it requires to know the position of the last token. If a
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
+ each row of the batch).
+ """,
+ DeepseekV3_START_DOCSTRING,
+)
+class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.model = DeepseekV3Model(config)
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.embed_tokens = value
+
+ @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = (
+ return_dict if return_dict is not None else self.config.use_return_dict
+ )
+
+ transformer_outputs = self.model(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states = transformer_outputs[0]
+ logits = self.score(hidden_states)
+
+ if input_ids is not None:
+ batch_size = input_ids.shape[0]
+ else:
+ batch_size = inputs_embeds.shape[0]
+
+ if self.config.pad_token_id is None and batch_size != 1:
+ raise ValueError(
+ "Cannot handle batch sizes > 1 if no padding token is defined."
+ )
+ if self.config.pad_token_id is None:
+ sequence_lengths = -1
+ else:
+ if input_ids is not None:
+ sequence_lengths = (
+ torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
+ ).to(logits.device)
+ else:
+ sequence_lengths = -1
+
+ pooled_logits = logits[
+ torch.arange(batch_size, device=logits.device), sequence_lengths
+ ]
+
+ loss = None
+ if labels is not None:
+ labels = labels.to(logits.device)
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (
+ labels.dtype == torch.long or labels.dtype == torch.int
+ ):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(pooled_logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(
+ pooled_logits.view(-1, self.num_labels), labels.view(-1)
+ )
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(pooled_logits, labels)
+ if not return_dict:
+ output = (pooled_logits,) + transformer_outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutputWithPast(
+ loss=loss,
+ logits=pooled_logits,
+ past_key_values=transformer_outputs.past_key_values,
+ hidden_states=transformer_outputs.hidden_states,
+ attentions=transformer_outputs.attentions,
+ )
diff --git a/npu_tuned_model/llm/deepseek_v3/scripts/runner_deepseek.py b/npu_tuned_model/llm/deepseek_v3/scripts/runner_deepseek.py
new file mode 100644
index 0000000000000000000000000000000000000000..404546a5228f0b50add6eb7f104f268110d7373e
--- /dev/null
+++ b/npu_tuned_model/llm/deepseek_v3/scripts/runner_deepseek.py
@@ -0,0 +1,251 @@
+# coding=utf-8
+# Copyright (c) 2024, HUAWEI CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import os
+import time
+import argparse
+import logging
+import copy
+import numpy as np
+import torch
+import torch_npu
+
+from functools import wraps
+from engine.model_runner import ModelRunner
+from models.modeling_deepseek import DeepseekV3ForCausalLM
+
+root_logger = logging.getLogger()
+root_logger.handlers.clear()
+logging.basicConfig(format='%(asctime)s - %(levelname)s - [LLM](%(filename)s:%(lineno)d): %(message)s',
+ level=logging.INFO)
+logging.getLogger("paramiko").setLevel(logging.ERROR)
+
+torch.manual_seed(42)
+torch.npu.manual_seed_all(42)
+
+
+def override(func):
+ @wraps(func)
+ def wrapper(*args, **kwargs):
+ return func(*args, **kwargs)
+ return wrapper
+
+
+def get_init_attn_mask(mask_length, device, valid_len=None):
+ share_mask_tril = ~torch.tril(
+ torch.ones((mask_length, mask_length),
+ dtype=torch.bool, device=device))
+ if valid_len is not None:
+ share_mask_tril[-valid_len:, :] = torch.zeros(valid_len, mask_length)
+ return share_mask_tril
+
+
+def get_decode_mask(mask_length, device, position):
+ decode_mask = torch.zeros((1, mask_length), device=device)
+ decode_mask[0, :position] = 1
+ return decode_mask
+
+
+class DeepSeekRunner(ModelRunner):
+ def __init__(self, model_path, execute_mode, **kwargs):
+ super().__init__(model_path, execute_mode, **kwargs)
+ self.enable_mla = kwargs.get("enable_mla", 0)
+ self.no_ckpt = int(os.getenv("NO_CKPT", "0"))
+ self.enable_mix = int(os.getenv("ENABLE_MIX", "0"))
+ if self.enable_mix:
+ self.attn_dp_size = int(os.getenv("ATTN_DP_SIZE", "0"))
+ else:
+ self.attn_dp_size = 1
+
+ def init_model(self):
+ if not self.no_ckpt:
+ self.use_pretrained_model = True
+ config = None
+ else:
+ self.use_pretrained_model = False
+ try:
+ from models.configuration_deepseek import DeepseekV3Config as config
+ except:
+ config = None
+ logging.info(f"using default DeepseekV3ForCausalLM: for model name is %s", self.model_name)
+ super().init_model(DeepseekV3ForCausalLM, config)
+
+ @override
+ def mark_inputs(self, model_inputs):
+ if self.execute_mode == "dynamo":
+ input_ids = model_inputs.get("input_ids")
+ kv_len = model_inputs.get("kv_len")
+ attention_mask = model_inputs.get("attention_mask")
+ position_ids = model_inputs.get("position_ids")
+ past_key_values = model_inputs.get("past_key_values")
+
+ # prefill with dynamic sequence length, decode with static sequence length
+ torch._dynamo.mark_static(kv_len)
+ for item in past_key_values:
+ for sub_item in item:
+ torch._dynamo.mark_static(sub_item)
+
+ torch._dynamo.mark_static(input_ids)
+ if attention_mask is not None:
+ torch._dynamo.mark_static(attention_mask)
+ torch._dynamo.mark_static(position_ids)
+
+ @override
+ def model_input_prepare(self, input_dict):
+ input_ids = input_dict.get("input_ids")
+ attention_mask = input_dict.get("attention_mask")
+ past_key_values = input_dict.get("past_key_values")
+ is_prefill = input_dict.get("is_prefill")
+ kv_len = input_dict.get("kv_len")
+ share_mask_tril = input_dict.get("share_mask_tril")
+ model_inputs = self.model.prepare_inputs_for_generation(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ past_key_values=past_key_values,
+ is_prefill=is_prefill,
+ kv_len=kv_len,
+ input_lens=input_dict.get("input_lens"),
+ share_mask_tril=share_mask_tril,
+ world_size=self.world_size)
+ return model_inputs
+
+ @override
+ def model_output_process(self, model_inputs, outputs, input_dict):
+ next_batch = self.batch_size if input_dict["is_prefill"] else 1
+ next_batch_dp = next_batch // self.attn_dp_size if input_dict["is_prefill"] else 1
+ input_dict['is_prefill'] = False
+ input_dict['input_lens'] = input_dict['input_lens'] + 1
+
+ kv_len = torch.max(model_inputs.get("position_ids"), axis=1)[0] + 1
+ input_dict['kv_len'] = self.repeat_batch(kv_len, next_batch_dp)
+
+ logits = outputs
+ past_key_values = model_inputs.get("past_key_values")
+ past_key_values_batch = ()
+ for i in range(len(past_key_values)):
+ past_key_values_layer_i = past_key_values[i]
+ cache_new_i = ()
+ for cache_j in past_key_values_layer_i:
+ cache_j_new = self.repeat_batch(cache_j, next_batch_dp)
+ cache_new_i += (cache_j_new, )
+ past_key_values_batch += (cache_new_i, )
+ input_dict["past_key_values"] = past_key_values_batch
+
+ attention_mask = None
+
+ share_mask_tril = get_decode_mask(mask_length=self.max_position_embeddings,
+ device=self.device,
+ position=input_dict["input_lens"])
+ share_mask_tril = share_mask_tril[None, None, ...]
+
+ input_dict['attention_mask'] = attention_mask
+ input_dict['share_mask_tril'] = self.repeat_batch(share_mask_tril, self.batch_size)
+
+ next_tokens = torch.argmax(logits, dim=-1)[:, -1:]
+ input_dict['input_ids'] = self.repeat_batch(next_tokens, next_batch)
+ input_dict['generate_ids'] = self.repeat_batch(
+ torch.cat([input_dict['generate_ids'], next_tokens], dim=-1),
+ next_batch
+ )
+
+ @override
+ def model_generate(self, prompts, warm_up=False, **kwargs):
+ assert self.input_max_len > 0
+ calling_func = {
+ "default": self.tokenizer,
+ "chat": self.tokenizer.apply_chat_template
+ }
+ kwargs = {
+ "return_tensors": "pt",
+ "truncation": True,
+ "padding": "max_length",
+ "max_length": self.input_max_len
+ }
+ if self.tokenizer_mode == "chat":
+ chat_kwargs = {
+ "add_generation_prompt": True, "return_dict": True
+ }
+ kwargs.update(chat_kwargs)
+
+ tokenizer = calling_func[self.tokenizer_mode]
+ inputs = tokenizer(prompts, **kwargs).to(self.device)
+ if int(os.getenv("ENABLE_PROFILE", "0")):
+ inputs.attention_mask = inputs.attention_mask * 0 + 1
+
+ # get init input_dict
+ share_mask_tril = get_init_attn_mask(
+ self.max_position_embeddings, self.device,
+ valid_len=self.input_max_len)
+ share_mask_tril = share_mask_tril[None, None, ...]
+
+ input_lens = copy.deepcopy(inputs.input_ids.size()[1])
+ logging.info("Prompt lens is : %d", input_lens)
+ input_dict = {
+ "input_ids": inputs.input_ids,
+ "input_lens": input_lens,
+ "attention_mask": inputs.attention_mask,
+ "past_key_values": None,
+ "is_prefill": True,
+ "kv_len": None,
+ "share_mask_tril": share_mask_tril,
+ "generate_ids": inputs.input_ids,
+ }
+
+ prefill_time = 0
+ decode_time = 0
+ generate_tokens = 0
+ cnt = 0
+ while True:
+ jump_flag, profile_switch, profile_save_path = self._get_running_config(cnt, warm_up, generate_tokens)
+ if jump_flag:
+ break
+
+ model_inputs = self.model_input_prepare(input_dict)
+ outputs = self.model_inference(model_inputs, warm_up=warm_up, profile_switch=profile_switch,
+ profile_save_path=profile_save_path)
+ self.model_output_process(model_inputs, outputs, input_dict)
+ generate_tokens += 1
+ cnt += 1
+
+ generate_ids = input_dict["generate_ids"][0:1, input_lens:].clip(0, self.model.config.vocab_size - 1)
+ res = self.tokenizer.batch_decode(generate_ids, skip_special_tokens=True)
+
+ if isinstance(res, list):
+ for answer in res:
+ logging.info("Inference decode result: \n%s", answer)
+ else:
+ logging.info("Inference decode result: \n%s", res)
+ return res
+
+ def set_enable_profile(self, flag):
+ self.enable_profile = flag
+ logging.info(">>> Runner set enable_profile as: %d", flag)
+
+ def _get_running_config(self, cnt, warm_up, generate_tokens):
+ default_decode_dump = 2
+ # warm up only perform for 5 times(decode)
+ jump_flag_warm = warm_up and cnt >= default_decode_dump
+ # do not generate after max_token
+ jump_flag_oversize = generate_tokens >= self.max_new_tokens
+ jump_flag = jump_flag_oversize or jump_flag_warm
+
+ # profile settings
+ profile_switch = self.enable_profile and (cnt < default_decode_dump) and (not warm_up)
+
+ path_prefill = f"{self.profiling_path}/prefill"
+ path_decode = f"{self.profiling_path}/decode"
+ profile_save_path_dict = {0: path_prefill, 1: path_decode}
+ profile_save_path = profile_save_path_dict.get(cnt, path_decode)
+ return jump_flag, profile_switch, profile_save_path
diff --git a/npu_tuned_model/llm/deepseek_v3/scripts/split_weight.py b/npu_tuned_model/llm/deepseek_v3/scripts/split_weight.py
new file mode 100644
index 0000000000000000000000000000000000000000..59b3cf79d0fae266463704784988634aebe45431
--- /dev/null
+++ b/npu_tuned_model/llm/deepseek_v3/scripts/split_weight.py
@@ -0,0 +1,188 @@
+import os
+import argparse
+import logging
+import shutil
+import numpy as np
+import torch
+from torch import nn
+from transformers import AutoModelForCausalLM
+from models.modeling_deepseek import DeepseekV3ForCausalLM
+
+root_logger = logging.getLogger()
+root_logger.handlers.clear()
+logging.basicConfig(format='%(asctime)s - %(levelname)s - [LLM](%(filename)s:%(lineno)d): %(message)s',
+ level=logging.INFO)
+logging.getLogger("paramiko").setLevel(logging.ERROR)
+
+
+def split_w(src_model, dst_model, world_size, local_rank, use_gmm_kernel=True):
+ def _to_parameter(data):
+ return nn.Parameter(data, requires_grad=False)
+
+ vocab_size = src_model.model.vocab_size // world_size
+
+ dst_model.lm_head.weight.data = src_model.lm_head.weight.data[local_rank * vocab_size: (local_rank + 1) * vocab_size, :]
+ dst_model.model.embed_tokens.weight.data = src_model.model.embed_tokens.weight.data[local_rank * vocab_size: (local_rank + 1) * vocab_size, :]
+
+ dst_model.model.norm.weight.data = src_model.model.norm.weight.data
+ q_dim = dst_model.layers[0].self_attn.num_heads_per_rank * dst_model.layers[0].self_attn.q_head_dim
+ k_dim = dst_model.layers[0].self_attn.num_heads_per_rank * \
+ (dst_model.layers[0].self_attn.qk_nope_head_dim + dst_model.layers[0].self_attn.v_head_dim)
+ o_dim = dst_model.layers[0].self_attn.num_heads_per_rank * dst_model.layers[0].self_attn.v_head_dim
+
+ for i, block in enumerate(src_model.model.layers):
+ if dst_model.model.layers[i].self_attn.q_lora_rank is None:
+ dst_model.model.layers[i].self_attn.q_proj.weight.data = \
+ block.self_attn.q_proj.weight.data[local_rank * q_dim: (local_rank + 1) * q_dim, :].contiguous()
+ else:
+ dst_model.model.layers[i].self_attn.q_a_proj.weight.data = \
+ block.self_attn.q_a_proj.weight.data
+ dst_model.model.layers[i].self_attn.q_a_layernorm.weight.data = \
+ block.self_attn.q_a_layernorm.weight.data
+ dst_model.model.layers[i].self_attn.q_ab_proj.weight.data = \
+ block.self_attn.q_b_proj.weight.data[local_rank * q_dim: (local_rank + 1) * q_dim, :].contiguous()
+
+ dst_model.model.layers[i].self_attn.kv_a_proj_woth_mqa.weight.data = \
+ block.self_attn.kv_a_proj_woth_mqa.weight.data
+
+ dst_model.model.layers[i].self_attn.kv_a_layernorm.weight.data = \
+ block.self_attn.kv_a_layernorm.weight.data
+ dst_model.model.layers[i].self_attn.o_proj.weight.data = \
+ block.self_attn.o_proj.weight.data[:, local_rank * o_dim: (local_rank + 1) * o_dim].contiguous()
+ dst_model.model.layers[i].self_attn.input_layernorm.weight.data = \
+ block.self_attn.input_layernorm.weight.data
+ dst_model.model.layers[i].self_attn.post_attention_layernorm.weight.data = \
+ block.self_attn.post_attention_layernorm.weight.data
+
+ kv_b_proj_weight_data = block.self_attn.kv_b_proj.weight.data[local_rank * k_dim: (local_rank + 1) * k_dim, :].contiguous()
+ qk_nope_head_dim = dst_model.layers[i].self_attn.qk_nope_head_dim
+ num_heads_per_rank = dst_model.layers[i].self_attn.num_heads_per_rank
+ kv_lora_rank = dst_model.layers[i].self_attn.kv_lora_rank
+ v_head_dim = dst_model.layers[i].self_attn.v_head_dim
+
+ index_tensor = torch.arange(qk_nope_head_dim).repeat(num_heads_per_rank) + torch.arange(num_heads_per_rank).repeat_interleave(qk_nope_head_dim) * (qk_nope_head_dim + v_head_dim)
+ kv_b_proj_w_k = torch.index_select(kv_b_proj_weight_data, dim=0, index=index_tensor)
+ dst_model.model.layers[i].self_attn.kv_b_proj_w_k.data = kv_b_proj_w_k.view(num_heads_per_rank, qk_nope_head_dim, kv_lora_rank).contiguous()
+ index_tensor = torch.arange(qk_nope_head_dim, qk_nope_head_dim + v_head_dim).repeat(num_heads_per_rank) + torch.arange(num_heads_per_rank).repeat_interleave(v_head_dim) * (qk_nope_head_dim + v_head_dim)
+ kv_b_proj_w_v = torch.index_select(kv_b_proj_weight_data, dim=0, index=index_tensor)
+ dst_model.model.layers[i].self_attn.kv_b_proj_w_v.data = kv_b_proj_w_v.view(num_heads_per_rank, v_head_dim, kv_lora_rank).transpose(1, 2).contiguous()
+
+ # moe experts
+ # TP
+ if not (i >= dst_model.config.first_k_dense_replace and i % dst_model.config.moe_layer_freq == 0):
+ up_weight_list = []
+ ffn_dim = dst_model.model.layers[i].mlp.intermediate_size_per_rank
+ gate_weight = block.mlp.gate_proj.weight[local_rank * ffn_dim: (local_rank + 1) * ffn_dim, :].contiguous()
+ up_weight = block.mlp.up_proj.weight[local_rank * ffn_dim: (local_rank + 1) * ffn_dim, :].contiguous()
+ up_weight_list.append(_to_parameter(torch.cat([gate_weight, up_weight], axis=0)))
+
+ if len(up_weight_list) == 1:
+ dst_model.model.layers[i].mlp.merged_up_gate_proj.weight = up_weight_list[0]
+ else:
+ dst_model.model.layers[i].mlp.merged_up_gate_proj.weight = _to_parameter(torch.cat(up_weight_list, axis=0))
+ dst_model.model.layers[i].mlp.down_proj.weight = \
+ block.mlp.down_proj.weight.data[:, local_rank * ffn_dim: (local_rank + 1) * ffn_dim].contiguous()
+
+ else:
+ shared_up_weight_list = []
+ ffn_dim = dst_model.model.layers[i].mlp.shared_expert.intermediate_size_per_rank
+ gate_weight = block.mlp.shared_expert.gate_proj.weight[local_rank * ffn_dim: (local_rank + 1) * ffn_dim, :].contiguous()
+ up_weight = block.mlp.shared_expert.up_proj.weight[local_rank * ffn_dim: (local_rank + 1) * ffn_dim, :].contiguous()
+ shared_up_weight_list.append(_to_parameter(torch.cat([gate_weight, up_weight], axis=0)))
+ if len(shared_up_weight_list) == 1:
+ dst_model.model.layers[i].mlp.shared_expert.merged_up_gate_proj.weight = shared_up_weight_list[0]
+ else:
+ dst_model.model.layers[i].mlp.shared_expert.merged_up_gate_proj.weight = \
+ _to_parameter(torch.cat(shared_up_weight_list, axis=0))
+ dst_model.model.layers[i].mlp.shared_expert.down_proj.weight = \
+ block.mlp.shared_expert.down_proj.weight.data[:, local_rank * ffn_dim: (local_rank + 1) * ffn_dim].contiguous()
+ dst_model.model.layers[i].mlp.gate.weight.data = block.mlp.gate.weight.data
+ if dst_model.model.layers[i].mlp.gate.topk_method == "noaux_tc":
+ dst_model.model.layers[i].mlp.gate.a_score_correction_bias.data = block.mlp.gate.a_score_correction_bias.data
+
+ expert_num = block.mlp.config.n_routed_experts
+ gate_proj_list, down_proj_list, up_proj_list = [], [], []
+ for j, src_expert in enumerate(block.mlp.experts):
+ if use_gmm_kernel:
+ ffn_dim = dst_model.model.layers[i].mlp.experts.intermediate_size_per_rank
+ gate_proj_list.append(src_expert.gate_proj.weight.data[local_rank * ffn_dim: (local_rank + 1) * ffn_dim, :].contiguous())
+ up_proj_list.append(src_expert.up_proj.weight.data[local_rank * ffn_dim: (local_rank + 1) * ffn_dim, :].contiguous())
+ down_proj_list.append(src_expert.down_proj.weight.data[:, local_rank * ffn_dim: (local_rank + 1) * ffn_dim].contiguous())
+ else:
+ ffn_dim = dst_model.model.layers[i].mlp.experts[j].intermediate_size_per_rank
+ dst_model.model.layers[i].mlp.experts[j].gate_proj.weight.data = \
+ src_expert.gate_proj.weight.data[local_rank * ffn_dim: (local_rank + 1) * ffn_dim, :].contiguous()
+ dst_model.model.layers[i].mlp.experts[j].up_proj.weight.data = \
+ src_expert.up_proj.weight.data[local_rank * ffn_dim: (local_rank + 1) * ffn_dim, :].contiguous()
+ dst_model.model.layers[i].mlp.experts[j].down_proj.weight.data = \
+ src_expert.down_proj.weight.data[:, local_rank * ffn_dim: (local_rank + 1) * ffn_dim].contiguous()
+
+ if use_gmm_kernel:
+ dst_model.model.layers[i].mlp.experts.group_w2.data = \
+ torch.cat(down_proj_list, dim=0).view(expert_num, -1, ffn_dim).contiguous()
+ group_gate_proj = torch.cat(gate_proj_list, dim=0).view(expert_num, ffn_dim, -1).contiguous()
+ group_up_proj = torch.cat(up_proj_list, dim=0).view(expert_num, ffn_dim, -1).contiguous()
+ dst_model.model.layers[i].mlp.experts.group_w1_w3.data = torch.cat([group_gate_proj, group_up_proj], dim=1)
+
+
+def copy_files_with_prefix(src_dir, dst_dir, prefix):
+ for file in os.listdir(src_dir):
+ if file.startswith(prefix):
+ src_file = os.path.join(src_dir, file)
+ dst_file = os.path.join(dst_dir, file)
+ shutil.copy2(src_file, dst_file)
+
+
+def parse_args():
+ parser = argparse.ArgumentParser(description="split weight parameters with tensor parallel")
+ parser.add_argument('--model-path', type=str, help="Path of model weights")
+ parser.add_argument('--output-path', type=str, help="The output directory where the results are saved")
+ parser_args = parser.parse_args()
+ return parser_args
+
+
+if __name__ == "__main__":
+ args = parse_args()
+ output_path = args.output_path
+ if not os.path.exists(output_path):
+ os.makedirs(output_path)
+ rank_size = int(os.getenv("WORLD_SIZE", "1"))
+ origin_model = AutoModelForCausalLM.from_pretrained(args.model_path,
+ trust_remote_code=True,
+ ignore_mismatched_sizes=True,
+ low_cpu_mem_usage=True,
+ torch_dtype=torch.bfloat16,
+ attn_implementation="eager")
+ src_param_size = 0
+ for name, params in origin_model.named_parameters():
+ size_per_param = np.prod(params.size())
+ src_param_size += size_per_param
+ logging.info("Param before tensor parallel: %s, %s, %s",
+ name, params.size(), params.dtype)
+ logging.info("Total param size before tensor parallel: %s", src_param_size)
+
+ for rank_id in range(rank_size):
+ logging.info("rank_id={} / rank_size={}".format(rank_id, rank_size))
+ os.environ["LOCAL_RANK"] = rank_id
+
+ save_path = os.path.join(output_path, f"rank_{rank_id}")
+ logging.info("Split weight for rank %s start, save path is: %s", rank_id, save_path)
+
+ config = origin_model.config
+ part_model = DeepseekV3ForCausalLM(config)
+
+ split_w(origin_model, part_model, rank_size, rank_id)
+
+ dst_param_size = 0
+ for name, params in part_model.named_parameters():
+ size_per_param = np.prod(params.size())
+ dst_param_size += size_per_param
+ logging.info("Param after tensor parallel: %s, %s, %s, %s",
+ name, params.size(), params.dtype, params.device)
+ logging.info("Total param size after tensor parallel: %s", dst_param_size)
+
+ part_model.save_pretrained(save_path)
+ copy_files_with_prefix(args.model_path, save_path, "tokenizer")
+ logging.info("Split weight for rank %s finished, save path is: %s", rank_id, save_path)
+
+ del part_model
\ No newline at end of file