Create your Gitee Account
Explore and code with more than 12 million developers,Free private repositories !:)
Sign up
文件
Clone or Download
yolov8_pose_ov_infer.cpp 5.70 KB
Copy Edit Raw Blame History
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <openvino/openvino.hpp> //openvino header file
#include <opencv2/opencv.hpp> //opencv header file
using namespace cv;
using namespace dnn;
//Colors for 17 keypoints
std::vector<cv::Scalar> colors = { Scalar(255, 0, 0), Scalar(255, 0, 255), Scalar(170, 0, 255), Scalar(255, 0, 85),
Scalar(255, 0, 170), Scalar(85, 255, 0), Scalar(255, 170, 0), Scalar(0, 255, 0),
Scalar(255, 255, 0), Scalar(0, 255, 85), Scalar(170, 255, 0), Scalar(0, 85, 255),
Scalar(0, 255, 170), Scalar(0, 0, 255), Scalar(0, 255, 255), Scalar(85, 0, 255),
Scalar(0, 170, 255)};
// Keep the ratio before resize
Mat letterbox(const cv::Mat& source)
{
int col = source.cols;
int row = source.rows;
int _max = MAX(col, row);
Mat result = Mat::zeros(_max, _max, CV_8UC3);
source.copyTo(result(Rect(0, 0, col, row)));
return result;
}
int main(int argc, char* argv[])
{
// -------- Step 1. Initialize OpenVINO Runtime Core --------
ov::Core core;
// -------- Step 2. Compile the Model --------
auto compiled_model = core.compile_model("yolov8n-pose.xml", "CPU");
// -------- Step 3. Create an Inference Request --------
ov::InferRequest infer_request = compiled_model.create_infer_request();
// -------- Step 4.Read a picture file and do the preprocess --------
Mat img = cv::imread("bus.jpg");
// Preprocess the image
Mat letterbox_img = letterbox(img);
float scale = letterbox_img.size[0] / 640.0;
Mat blob = blobFromImage(letterbox_img, 1.0 / 255.0, Size(640, 640), Scalar(), true);
// -------- Step 5. Feed the blob into the input node of the Model -------
// Get input port for model with one input
auto input_port = compiled_model.input();
// Create tensor from external memory
ov::Tensor input_tensor(input_port.get_element_type(), input_port.get_shape(), blob.ptr(0));
// Set input tensor for model with one input
infer_request.set_input_tensor(input_tensor);
// -------- Step 6. Start inference --------
infer_request.infer();
// -------- Step 7. Get the inference result --------
auto output = infer_request.get_output_tensor(0);
auto output_shape = output.get_shape();
std::cout << "The shape of output tensor:" << output_shape << std::endl;
// -------- Step 8. Postprocess the result --------
float* data = output.data<float>();
Mat output_buffer(output_shape[1], output_shape[2], CV_32F, data);
transpose(output_buffer, output_buffer); //[8400,56]
float score_threshold = 0.25;
float nms_threshold = 0.5;
std::vector<int> class_ids;
std::vector<float> class_scores;
std::vector<Rect> boxes;
std::vector<std::vector<float>> objects_keypoints;
// //56: box[cx, cy, w, h] + Score + [17,3] keypoints
for (int i = 0; i < output_buffer.rows; i++) {
float class_score = output_buffer.at<float>(i, 4);
if (class_score > score_threshold) {
class_scores.push_back(class_score);
class_ids.push_back(0); //{0:"person"}
float cx = output_buffer.at<float>(i, 0);
float cy = output_buffer.at<float>(i, 1);
float w = output_buffer.at<float>(i, 2);
float h = output_buffer.at<float>(i, 3);
// Get the box
int left = int((cx - 0.5 * w) * scale);
int top = int((cy - 0.5 * h) * scale);
int width = int(w * scale);
int height = int(h * scale);
// Get the keypoints
std::vector<float> keypoints;
Mat kpts = output_buffer.row(i).colRange(5, 56);
for (int i = 0; i < 17; i++) {
float x = kpts.at<float>(0, i * 3 + 0) * scale;
float y = kpts.at<float>(0, i * 3 + 1) * scale;
float s = kpts.at<float>(0, i * 3 + 2);
keypoints.push_back(x);
keypoints.push_back(y);
keypoints.push_back(s);
}
boxes.push_back(Rect(left, top, width, height));
objects_keypoints.push_back(keypoints);
}
}
//NMS
std::vector<int> indices;
NMSBoxes(boxes, class_scores, score_threshold, nms_threshold, indices);
// -------- Visualize the detection results -----------
for (size_t i = 0; i < indices.size(); i++) {
int index = indices[i];
// Draw bounding box
rectangle(img, boxes[index], Scalar(0, 0, 255), 2, 8);
std::string label = "Person:" + std::to_string(class_scores[index]).substr(0, 4);
Size textSize = cv::getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, 0);
Rect textBox(boxes[index].tl().x, boxes[index].tl().y - 15, textSize.width, textSize.height+5);
cv::rectangle(img, textBox, Scalar(0, 0, 255), FILLED);
putText(img, label, Point(boxes[index].tl().x, boxes[index].tl().y - 5), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255, 255, 255));
// Draw keypoints
std::vector<float> object_keypoints = objects_keypoints[index];
for (int i = 0; i < 17; i++) {
int x = std::clamp(int(object_keypoints[i*3+0]), 0, img.cols);
int y = std::clamp(int(object_keypoints[i*3+1]), 0, img.rows);
//Draw point
circle(img, Point(x, y), 5, colors[i], -1);
}
}
namedWindow("YOLOv8-Pose OpenVINO Inference C++ Demo", WINDOW_AUTOSIZE);
imshow("YOLOv8-Pose OpenVINO Inference C++ Demo", img);
waitKey(0);
destroyAllWindows();
return 0;
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化