代码拉取完成,页面将自动刷新
同步操作将从 爿臣戈王耑/facenet_face_recognition 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# -*- coding:utf-8 -*-
import os
import json
import tensorflow as tf
import src.facenet
import src.align.detect_face
import numpy as np
from scipy import misc
import face_mysql
class face_reconition:
def __init__(self):
pass
def prewhiten(self, x):
mean = np.mean(x)
std = np.std(x)
std_adj = np.maximum(std, 1.0 / np.sqrt(x.size))
y = np.multiply(np.subtract(x, mean), 1 / std_adj)
return y
# 根据路径获取该文件夹中所有的图片
def get_image_paths(self, inpath):
paths = []
for file in os.listdir(inpath):
if os.path.isfile(os.path.join(inpath, file)):
if file.lower().endswith(('.png', '.jpg', '.jpeg')) is False:
continue
paths.append(os.path.join(inpath, file))
return (paths)
# 将一个文件夹下的所有图片转化为json 方法二 只能是传入文件夹 并存入数据库
def images_to_vectors(self, inpath, outjson_path, modelpath):
results = dict()
with tf.Graph().as_default():
with tf.Session() as sess:
src.facenet.load_model(modelpath)
# Get input and output tensors
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
image_paths = self.get_image_paths(inpath)
for image_path in image_paths:
# 获取图片中的人脸数
img = misc.imread(os.path.expanduser(image_path), mode='RGB')
images = self.image_array_align_data(img,image_path)
#判断是否检测出人脸 检测不出 就跳出此循环
if images.shape[0] == 1 : continue
feed_dict = {images_placeholder: images, phase_train_placeholder: False}
emb_array = sess.run(embeddings, feed_dict=feed_dict)
filename_base, file_extension = os.path.splitext(image_path)
for j in range(0, len(emb_array)):
results[filename_base + "_" + str(j)] = emb_array[j].tolist()
face_mysql_instant = face_mysql.face_mysql()
face_mysql_instant.insert_facejson(filename_base + "_" + str(j),
",".join(str(li) for li in emb_array[j].tolist()))
# All done, save for later!
json.dump(results, open(outjson_path, "w"))
# 返回图像中所有人脸的向量
def image_array_align_data(self, image_arr,image_path, image_size=160, margin=32, gpu_memory_fraction=1.0,
detect_multiple_faces=True):
minsize = 20 # minimum size of face
threshold = [0.6, 0.7, 0.7] # three steps's threshold
factor = 0.709 # scale factor
print('Creating networks and loading parameters')
with tf.Graph().as_default():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = src.align.detect_face.create_mtcnn(sess, None)
img = image_arr
bounding_boxes, _ = src.align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
nrof_faces = bounding_boxes.shape[0]
nrof_successfully_aligned = 0
if nrof_faces > 0:
det = bounding_boxes[:, 0:4]
det_arr = []
img_size = np.asarray(img.shape)[0:2]
if nrof_faces > 1:
if detect_multiple_faces:
for i in range(nrof_faces):
det_arr.append(np.squeeze(det[i]))
else:
bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1])
img_center = img_size / 2
offsets = np.vstack(
[(det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0]])
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
index = np.argmax(
bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering
det_arr.append(det[index, :])
else:
det_arr.append(np.squeeze(det))
images = np.zeros((nrof_faces, image_size, image_size, 3))
for i, det in enumerate(det_arr):
det = np.squeeze(det)
bb = np.zeros(4, dtype=np.int32)
bb[0] = np.maximum(det[0] - margin / 2, 0)
bb[1] = np.maximum(det[1] - margin / 2, 0)
bb[2] = np.minimum(det[2] + margin / 2, img_size[1])
bb[3] = np.minimum(det[3] + margin / 2, img_size[0])
cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
# 进行图片缩放 cv2.resize(img,(w,h))
scaled = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
nrof_successfully_aligned += 1
# print(scaled)
# scaled=self.prewhiten(scaled)
# 保存检测的头像
filename_base = './img/'
filename = os.path.basename(image_path)
filename_name, file_extension = os.path.splitext(filename)
output_filename_n = "{}/{}_{}{}".format(filename_base, filename_name, i, file_extension)
misc.imsave(output_filename_n, scaled)
scaled = src.facenet.prewhiten(scaled)
scaled = src.facenet.crop(scaled, False, 160)
scaled = src.facenet.flip(scaled, False)
images[i] = scaled
if nrof_faces > 0:
return images
else:
#如果没有检测到人脸 直接返回一个1*3的0矩阵 多少维度都行 只要能和是不是一个图片辨别出来就行
return np.zeros((1,3))
if __name__ == "__main__":
face_reconition = face_reconition()
images_path = './img/img'
#模型地址
modelpath = '/export/zang/facenet/models/facenet/20170512-110547'
out_path = './img/pic.json'
face_reconition.images_to_vectors(images_path, out_path, modelpath)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。