加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
visodo.cpp 6.43 KB
一键复制 编辑 原始数据 按行查看 历史
deleji 提交于 2017-08-17 14:02 . 主程序
#include "vo_features.h"
using namespace cv;
using namespace std;
#define MAX_FRAME 2000
#define MIN_NUM_FEAT 2000
// IMP: Change the file directories (4 places) according to where your dataset is saved before running!
double getAbsoluteScale(int frame_id, int sequence_id, double z_cal) {
string line;
int i = 0;
ifstream myfile ("G:/data_odometry_gray/dataset1/poses/00.txt");
double x =0, y=0, z = 0;
double x_prev, y_prev, z_prev;
if (myfile.is_open())
{
while (( getline (myfile,line) ) && (i<=frame_id))
{
z_prev = z;
x_prev = x;
y_prev = y;
std::istringstream in(line);
//cout << line << '\n';
for (int j=0; j<12; j++) {
in >> z ;
if (j==7) y=z;
if (j==3) x=z;
}
i++;
}
myfile.close();
}
else {
cout << "Unable to open file";
return 0;
}
return sqrt((x-x_prev)*(x-x_prev) + (y-y_prev)*(y-y_prev) + (z-z_prev)*(z-z_prev)) ;
}
int main( int argc, char** argv ) {
Mat img_1, img_2;
Mat R_f, t_f; //the final rotation and tranlation vectors containing the
ofstream myfile;
myfile.open ("results1_1.txt");
double scale = 1.00;
char filename1[200];
char filename2[200];
sprintf(filename1, "G:/data_odometry_gray/dataset/sequences/00/image_0/%06d.png", 0);
sprintf(filename2, "G:/data_odometry_gray/dataset/sequences/00/image_0/%06d.png", 1);
char text[100];
int fontFace = FONT_HERSHEY_PLAIN;
double fontScale = 1;
int thickness = 1;
cv::Point textOrg(10, 50);
//read the first two frames from the dataset
Mat img_1_c = imread(filename1);
Mat img_2_c = imread(filename2);
std::cout<<img_2_c.size<<endl;
if ( !img_1_c.data || !img_2_c.data ) {
std::cout<< " --(!) Error reading images " << std::endl; return -1;
}
// we work with grayscale images
cvtColor(img_1_c, img_1, COLOR_BGR2GRAY);
cvtColor(img_2_c, img_2, COLOR_BGR2GRAY);
// feature detection, tracking
vector<Point2f> points1, points2; //vectors to store the coordinates of the feature points
featureDetection(img_1, points1); //detect features in img_1
vector<uchar> status;
featureTracking(img_1,img_2,points1,points2, status); //track those features to img_2
//TODO: add a fucntion to load these values directly from KITTI's calib files
// WARNING: different sequences in the KITTI VO dataset have different intrinsic/extrinsic parameters
double focal = 718.8560;
cv::Point2d pp(607.1928, 185.2157);
//recovering the pose and the essential matrix
Mat F, R, t, mask,D,U,Vt,W,K,E;
//E = findEssentialMat(points2, points1, focal, pp, RANSAC, 0.999, 1.0, mask); opencv3.0新加入
//recoverPose(E, points2, points1, R, t, focal, pp, mask);
W = (Mat_<double>(3,3)<<0,-1,0,1,0,0,0,0,1);
K=(Mat_<double>(3,3)<<718.8560,0,607.1928,0,718.8560,185.2157,0,0,1);
F=findFundamentalMat(points2, points1,FM_RANSAC,3,0.99,mask);
E=(K.t())*F*K;
recoverPose(E, points2, points1, R, t, focal, pp, mask);
Mat prevImage = img_2;
Mat currImage;
vector<Point2f> prevFeatures = points2;
vector<Point2f> currFeatures;
char filename[100];
R_f = R.clone();
t_f = t.clone();
clock_t begin = clock();
namedWindow( "Road facing camera", WINDOW_AUTOSIZE );// Create a window for display.
namedWindow( "Trajectory", WINDOW_AUTOSIZE );// Create a window for display.
Mat traj = Mat::zeros(600, 600, CV_8UC3);
for(int numFrame=2; numFrame < MAX_FRAME; numFrame++) {
sprintf(filename, "G:/data_odometry_gray/dataset/sequences/00/image_1/%06d.png", numFrame);
//cout << numFrame << endl;
Mat currImage_c = imread(filename);
cvtColor(currImage_c, currImage, COLOR_BGR2GRAY);
vector<uchar> status;
featureTracking(prevImage, currImage, prevFeatures, currFeatures, status);
//E = findEssentialMat(currFeatures, prevFeatures, focal, pp, RANSAC, 0.999, 1.0, mask);
//recoverPose(E, currFeatures, prevFeatures, R, t, focal, pp, mask);
F=findFundamentalMat(currFeatures,prevFeatures,FM_RANSAC,3,0.99,mask);
E=(K.t())*F*K;
recoverPose(E, currFeatures, prevFeatures, R, t, focal, pp, mask);
Mat prevPts(2,prevFeatures.size(), CV_64F), currPts(2,currFeatures.size(), CV_64F); //声明2行,size列的矩阵
for(int i=0;i<prevFeatures.size();i++) { //this (x,y) combination makes sense as observed from the source code of triangulatePoints on GitHub
prevPts.at<double>(0,i) = prevFeatures.at(i).x;
prevPts.at<double>(1,i) = prevFeatures.at(i).y;
currPts.at<double>(0,i) = currFeatures.at(i).x;
currPts.at<double>(1,i) = currFeatures.at(i).y;
}
scale = getAbsoluteScale(numFrame, 0, t.at<double>(2));
//cout << "Scale is " << scale << endl;
if ((scale>0.1)&&(t.at<double>(2) > t.at<double>(0)) && (t.at<double>(2) > t.at<double>(1))) {
//t_f = t_f + (R_f*t);
t_f = t_f + scale*(R_f*t);
R_f = R*R_f;
}
else {
//cout << "scale below 0.1, or incorrect translation" << endl;
}
// lines for printing results
myfile << t_f.at<double>(0) << " " << t_f.at<double>(1) << " " << t_f.at<double>(2) << endl;
// a redetection is triggered in case the number of feautres being trakced go below a particular threshold
if (prevFeatures.size() < MIN_NUM_FEAT) {
//cout << "Number of tracked features reduced to " << prevFeatures.size() << endl;
//cout << "trigerring redection" << endl;
featureDetection(prevImage, prevFeatures);
featureTracking(prevImage,currImage,prevFeatures,currFeatures, status);
}
prevImage = currImage.clone();
prevFeatures = currFeatures;
int x = int(t_f.at<double>(0)) + 300;
int y = int(t_f.at<double>(2)) + 100;
circle(traj, Point(x, y) ,1, CV_RGB(255,0,0), 2);
rectangle( traj, Point(10, 30), Point(550, 50), CV_RGB(0,0,0), CV_FILLED);
sprintf(text, "Coordinates: x = %02fm y = %02fm z = %02fm", t_f.at<double>(0), t_f.at<double>(1), t_f.at<double>(2));
putText(traj, text, textOrg, fontFace, fontScale, Scalar::all(255), thickness, 8);
imshow( "Road facing camera", currImage_c );
imshow( "Trajectory", traj );
waitKey(1);
}
myfile.close();
clock_t end = clock();
double elapsed_secs = double(end - begin) / CLOCKS_PER_SEC;
cout << "Total time taken: " << elapsed_secs << "s" << endl;
//cout << R_f << endl;
//cout << t_f << endl;
return 0;
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化