代码拉取完成,页面将自动刷新
# -*- coding: utf-8 -*-
##########################
#### 图片处理相关 ####
##########################
import win32gui
import shutil
import io
import sys
import os
import time
from skimage.metrics import structural_similarity
import cv2 as cv
from PIL import Image
from PyQt5.QtWidgets import QApplication
import constant as c
import util
import numpy as np
from matplotlib import pyplot as plt
#######
#######
hwnd_title = dict()
########
########
def get_all_hwnd(hwnd,mouse):
if win32gui.IsWindow(hwnd) and win32gui.IsWindowEnabled(hwnd) and win32gui.IsWindowVisible(hwnd):
hwnd_title.update({hwnd:win32gui.GetWindowText(hwnd)})
def dir_check():
util.log_title('文件夹检查')
dir_List = [
c.img_dir_path,c.flag_dir_path,c.sub_dir_path,c.data_dir_path,
c.train_dir,c.front_img_dir,c.others_img_dir,c.new_front_img_dir,c.new_others_img_dir
];
for path in dir_List:
dir_create(path)
print(f'\t{path}\t\tok')
return True
def dir_create(path):
if not os.path.exists(path):
os.makedirs(path)
print(f'文件夹创建 -> {path}')
def time_str():
localtime=time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))
#系统当前时间年份
year=time.strftime('%Y',time.localtime(time.time()))
#月份
month=time.strftime('%m',time.localtime(time.time()))
#日期
day=time.strftime('%d',time.localtime(time.time()))
#具体时间 小时分钟毫秒
mdhms=time.strftime('%m%d%H%M%S',time.localtime(time.time()))
return f'{year}_{month}_{day}_{mdhms}'
def shot():
util.log_title('截图')
win32gui.EnumWindows(get_all_hwnd, 0)
mhxy_title = ''
for h,t in hwnd_title.items():
if t.startswith('梦幻西游 ONLINE'):
mhxy_title = t
print(mhxy_title)
hwnd = win32gui.FindWindow(None, mhxy_title)
app = QApplication(sys.argv)
desktop_id = app.desktop().winId()
screen = QApplication.primaryScreen()
img_desk = screen.grabWindow(desktop_id).toImage()
img_sc = screen.grabWindow(hwnd).toImage()
img_desk.save(c.img_desktop_path)
img_sc.save(c.img_sc_path)
print(f'img_desktop save to -> {os.path.abspath(c.img_desktop_path)}')
print(f'img_mhxy save to -> {os.path.abspath(c.img_sc_path)}')
if mhxy_title == '':
print('mhxy not start')
return False
return True
## 相似性判断
def compare_image(path_image1, path_image2):
imageA = cv.imread(path_image1)
imageB = cv.imread(path_image2)
grayA = cv.cvtColor(imageA, cv.COLOR_BGR2GRAY)
grayB = cv.cvtColor(imageB, cv.COLOR_BGR2GRAY)
(score, diff) = structural_similarity(grayA, grayB, full=True)
print("SSIM: {}".format(score))
return score
## 战斗截图
def fight_crop():
util.log_title('战斗标识截图')
return crop(c.img_sc_path,c.fighting_img_path,c.fight_shape)
## 战斗标识截图
def fight_flag_crop():
return crop(c.img_sc_path,c.fighting_flag_img_path,c.fight_shape)
#### 是否在战斗
def is_fight():
util.log_title('状态判断')
rate = compare_image(c.fighting_flag_img_path,c.fighting_img_path)
if rate > 0.95:
print('战斗 状态')
return True
else:
print('非战斗 状态')
return False
#### 图片检查
def image_check(img_path,size):
util.log_title('截图检查')
with Image.open(img_path) as img:
if img.size == size:
print(f'\t\tsize={size}\t\tok')
return True
print('Imgae Size Error')
return False
### 弹窗判断
# 是 切分出包含4人物大图 360 * 120
# 否 False
def popup_sub_crop():
util.log_title('弹窗判断')
shape_dict = {}
for i in range(len(c.popup_flag_img_paths)):
shape,score = template_match(c.popup_flag_img_paths[i],c.img_sc_path)
shape_dict[shape] = (score,i)
print(shape_dict)
max_shape = max(shape_dict, key=shape_dict.get)
score,i = shape_dict[max_shape]
print(f'最大区域 {max_shape} 最终得分为 {score}' )
if score >=3 :
sub_shape = (
max_shape[0]+c.popup_move_shapes[i][0],
max_shape[1]+c.popup_move_shapes[i][1],
max_shape[2]+c.popup_move_shapes[i][2],
max_shape[3]+c.popup_move_shapes[i][3]
)
print(f'弹框区域 {sub_shape}')
return crop(c.img_sc_path,c.popup_sub_img_path,sub_shape)
print(f'没有弹框')
return False
#### 裁剪
def crop(source_path,target_path,shape):
with Image.open(source_path) as img:
fighting_flag_img = img.crop(shape)
fighting_flag_img.save(target_path)
return True
#### 匹配
def template_match(template_path,src_path):
img = cv.imread(src_path,0)
img2 = img.copy()
template = cv.imread(template_path,0)
w, h = template.shape[::-1]
methods = ['cv.TM_CCOEFF', 'cv.TM_CCOEFF_NORMED','cv.TM_CCORR',
'cv.TM_CCORR_NORMED', 'cv.TM_SQDIFF', 'cv.TM_SQDIFF_NORMED']
shape_dict = {}
for meth in methods:
img = img2.copy()
method = eval(meth)
# Apply template Matching
res = cv.matchTemplate(img,template,method)
min_val, max_val, min_loc, max_loc = cv.minMaxLoc(res)
if method in [cv.TM_SQDIFF, cv.TM_SQDIFF_NORMED]:
top_left = min_loc
else:
top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
shape = (top_left[0],top_left[1],bottom_right[0],bottom_right[1])
if shape_dict.get(shape) == None:
shape_dict[shape] = 1;
else:
shape_dict[shape] = shape_dict[shape]+1
max_shape = max(shape_dict, key=shape_dict.get)
return max_shape,shape_dict[max_shape]
### 根据index返回对应 图片在桌面的中心点
def find_xy_indesktop(template_path):
util.log_title('坐标查找')
shape,score = template_match(template_path,c.img_desktop_path)
print(f'最高得分区域 {shape} 得分为 {score}')
if score >= 3:
x = (shape[2]+shape[0])//2
y = (shape[3]+shape[1])//2
print(f'中心点坐标为 {(x,y)}')
return x,y
else:
print(f'所有区域得分均小于3,匹配失败')
return 0,0
####
def find_mouse_in_desktop():
img = cv.imread(c.img_desktop_path,0)
img2 = img.copy()
template = cv.imread(c.mouse_flag_img_path,0)
w, h = template.shape[::-1]
img = img2.copy()
shape_list = []
threshold = 0.85
res = cv.matchTemplate(img,template,cv.TM_CCOEFF_NORMED)
loc = np.where( res >= threshold)
x = 10000
y = 10000
for pt in zip(*loc[::-1]):
top_left = pt
bottom_right = (top_left[0] + w, top_left[1] + h)
shape = (top_left[0],top_left[1],bottom_right[0],bottom_right[1])
shape_list.append(shape)
new_x = (shape[2]+shape[0])//2
if new_x < x :
x = new_x
y = (shape[3]+shape[1])//2
print(f'中心点坐标为 {(x,y)}')
return x,y
### 切成4份 360 * 120 -> 4 * (90*120)
def crop_4():
util.log_title('弹窗人物切分')
w = 90
h = 120
for i in range(len(c.crop_4_img_names)):
shape = (w*i, 0, w*(i+1), h)
crop(c.popup_sub_img_path,c.crop_4_img_paths[i],shape)
### 数据保存
def save_data_img(front_index):
for i in range(len(c.crop_4_img_paths)):
save_path = ''
if i == front_index:
save_path = os.path.join(c.new_front_img_dir,time_str()+'_'+str(i)+'.jpg')
else:
save_path = os.path.join(c.new_others_img_dir,time_str()+'_'+str(i)+'.jpg')
shutil.copyfile(c.crop_4_img_paths[i],save_path)
###
def move_new_to_train():
move_file(c.new_front_img_dir,c.front_img_dir)
move_file(c.new_others_img_dir,c.others_img_dir)
def move_file(src_path,target_path):
file_list=os.listdir(src_path)
if len(file_list)>0:
for file in file_list:
shutil.move(
os.path.join(src_path,file),
os.path.join(target_path,file)
)
print(f'{src_path} -> {target_path} 完毕')
####################################
####################################
def task():
print()
if shot(): ## 截图
if image_check(c.img_sc_path,c.screen_size): ## 检查截图大小
fight_crop() ## 战斗标识截图
if is_fight(): ## 判断是否在战斗
if popup_sub_crop(): ## 弹窗识别 与 人物区域切出
if image_check(c.popup_sub_img_path,c.sub_size): ## 弹窗人物截图检查
crop_4() ## 弹窗人物切分
print()
return True
return False
if __name__ == '__main__':
dir_check()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。