加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
tempcalib.py 6.62 KB
一键复制 编辑 原始数据 按行查看 历史
Richard Davies 提交于 2024-05-19 11:46 . Temp Calib Fix
# Cartographer Temperature Calibration
# Temperature Calibration Script by Viv & RichardTHF
from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt
class TempModel:
def __init__(self, a_a, a_b, b_a, b_b, fmin, fmin_temp):
self.a_a=a_a
self.a_b=a_b
self.b_a=b_a
self.b_b=b_b
self.fmin = fmin
self.fmin_temp = fmin_temp
def compensate(self, freq, temp_source, temp_target):
if self.a_a == None or self.a_b == None or self.b_a == None or self.b_b == None:
return freq
A=4*(temp_source*self.a_a)**2+4*temp_source*self.a_a*self.b_a+self.b_a**2+4*self.a_a
B=8*temp_source**2*self.a_a*self.a_b+4*temp_source*(self.a_a*self.b_b+self.a_b*self.b_a)+2*self.b_a*self.b_b+4*self.a_b-4*(freq-model.fmin)*self.a_a
C=4*(temp_source*self.a_b)**2+4*temp_source*self.a_b*self.b_b+self.b_b**2-4*(freq-model.fmin)*self.a_b
if(B**2-4*A*C<0):
param_c=freq-param_linear(freq-model.fmin,self.a_a,self.a_b)*temp_source**2-param_linear(freq-model.fmin,self.b_a,self.b_b)*temp_source
return param_linear(freq-model.fmin,self.a_a,self.a_b)*temp_target**2+param_linear(freq-model.fmin,self.b_a,self.b_b)*temp_target+param_c
ax=(np.sqrt(B**2-4*A*C)-B)/2/A
param_a=param_linear(ax,self.a_a,self.a_b)
param_b=param_linear(ax,self.b_a,self.b_b)
return param_a*(temp_target+param_b/2/param_a)**2+ax+model.fmin
def line_fit(x,a,b,c):
return a*x**2+b*x+c
def line0(x,a,c):
return a*x**2+c
def line120(x,a,c):
return a*x**2-240*a*x+c
def area_find(temp,freq):
middle=int(len(temp)/100/2)*100
i=j=100
i_flag=True
j_flag=True
for c in range(100):
if(i_flag):
i=i+100
if middle-i>=0:
linear_params, params_covariance = curve_fit(line_fit, temp[middle-i:middle+j],freq[middle-i:middle+j],maxfev=100000,ftol=1e-10,xtol=1e-10)
minus=line_fit(temp[middle-i:middle+j],linear_params[0],linear_params[1],linear_params[2])-freq[middle-i:middle+j]
if np.sum(np.square(minus))/len(minus)>threshold:
i=i-100
i_flag=False
if(j_flag):
j=j+100
if middle+j<=len(freq):
linear_params, params_covariance = curve_fit(line_fit, temp[middle-i:middle+j],freq[middle-i:middle+j],maxfev=100000,ftol=1e-10,xtol=1e-10)
minus=line_fit(temp[middle-i:middle+j],linear_params[0],linear_params[1],linear_params[2])-freq[middle-i:middle+j]
if np.sum(np.square(minus))/len(minus)>threshold:
j=j-100
j_flag=False
linear_params, params_covariance = curve_fit(line_fit, temp[middle-i:middle+j],freq[middle-i:middle+j],maxfev=100000,ftol=1e-10,xtol=1e-10)
return linear_params
def data_process(path):
freq=[]
temp=[]
with open(path, 'r') as file:
lines = file.readlines()
for line in lines:
data=line.split(',')
try:
freq.append(float(data[3]))
temp.append(float(data[5]))
except:pass
dv=int(len(temp)/1000)
if dv>1:
freq=np.array(freq[::dv])
temp=np.array(temp[::dv])
plt.plot(temp[20:],freq[20:])
param_bounds=([0,-np.inf,-np.inf],[np.inf,np.inf,np.inf])
linear_params, params_covariance = curve_fit(line_fit, temp[20:],freq[20:],bounds=param_bounds,maxfev=100000,ftol=1e-10,xtol=1e-10)
try:
plt.title("Range:"+str(int(np.max(freq[20:])-np.min(freq[20:]))))
except:
pass
axis=-1*linear_params[1]/2/linear_params[0]
if(axis>120):
linear_params1, params_covariance = curve_fit(line120, temp[20:],freq[20:],bounds=([0,-np.inf],[np.inf,np.inf]),maxfev=100000,ftol=1e-10,xtol=1e-10)
plt.plot(temp[20:],line120(temp[20:],linear_params1[0],linear_params1[1]))
return [linear_params1[0],-240*linear_params1[0],line120(120,linear_params1[0],linear_params1[1])]
elif(axis<0):
linear_params1, params_covariance = curve_fit(line0, temp[20:],freq[20:],bounds=([0,-np.inf],[np.inf,np.inf]),maxfev=100000,ftol=1e-10,xtol=1e-10)
plt.plot(temp[20:],line0(temp[20:],linear_params1[0],linear_params1[1]))
return [linear_params1[0],0,line0(0,linear_params1[0],linear_params1[1])]
plt.plot(temp[20:],line_fit(temp[20:],linear_params[0],linear_params[1],linear_params[2]))
linear_params[2]=line_fit(axis,linear_params[0],linear_params[1],linear_params[2])
return linear_params
def param_linear(x,a,b):
return a*x+b
while(1):
plt.figure(figsize=(25, 15))
paths=['./data1','./data2','./data3']
a=[]
b=[]
freqs=[]
num=231
try:
for path in paths:
plt.subplot(num)
num+=1
temp=data_process(path)
a.append(temp[0])
b.append(temp[1])
freqs.append(temp[2])
except:
print("please make sure you have move the 3 data file to cartographer-klipper folder\n if the files have been moved, are you running this from the cartographer-klipper folder?")
break
model=TempModel(None,None,None,None,2943053.8415908813,23.33)
linear_params, params_covariance = curve_fit(param_linear, np.array(freqs)-model.fmin,a,maxfev=100000,ftol=1e-10,xtol=1e-10)
model.a_a=linear_params[0]
model.a_b=linear_params[1]
linear_params1, params_covariance = curve_fit(param_linear, np.array(freqs)-model.fmin,b,maxfev=100000,ftol=1e-10,xtol=1e-10)
model.b_a=linear_params1[0]
model.b_b=linear_params1[1]
for path in paths:
plt.subplot(num)
num+=1
freq=[]
temp=[]
with open(path, 'r') as file:
lines = file.readlines()
for line in lines:
data=line.split(',')
try:
freq.append(float(data[3]))
temp.append(float(data[5]))
except:pass
dv=int(len(temp)/10000)
if dv>1:
freq=np.array(freq[::dv])
temp=np.array(temp[::dv])
temp=temp[200:]
freq=freq[200:]
result0=[]
for i in range(len(temp)):
result0.append(model.compensate(freq[i],temp[i],50))
plt.plot(temp,result0)
try:
plt.title("Range:"+str(int(np.max(result0)-np.min(result0))))
except:
pass
plt.savefig('fit_output.png')
print('fit result:')
print('tc_a_a:'+str(model.a_a)+'\ntc_a_b:'+str(model.a_b)+'\ntc_b_a:'+str(model.b_a)+'\ntc_b_b:'+str(model.b_b))
break
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化