加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
greedy_path.py 5.66 KB
一键复制 编辑 原始数据 按行查看 历史
Kepler 提交于 2020-11-23 13:58 . update bug of the file greedy_path.py
import copy
def takesecond(elem):
return elem[1]
# 计算两地之间的距离
def get_distance_city(point_position, index, logistics_center_position=None):
distance = []
if logistics_center_position == None:
center_point_x = point_position[index - 1][0]
center_point_y = point_position[index - 1][1]
for i in range(len(point_position)):
if i == index - 1:
continue
center_point_to_other_point = ((center_point_x - point_position[i][0]) ** 2 + (
center_point_y - point_position[i][1]) ** 2) ** (1/2)
str_index_format = '{0}->{1}'.format(index, i + 1)
format_distance = (str_index_format, center_point_to_other_point)
distance.append(format_distance)
else:
for i in range(len(point_position)):
logistics_center_point_to_city = ((logistics_center_position[0] - point_position[i][0]) ** 2 + (
logistics_center_position[1] - point_position[i][1]) ** 2) ** (1/2)
str_index_format = '0->{0}'.format(i + 1)
format_distance = (
str_index_format, logistics_center_point_to_city)
distance.append(format_distance)
return distance
# 按两地之间的距离进行排序
def sort_all_distance_by_elem_1(distance):
distance.sort(key=takesecond)
return distance
if __name__ == "__main__":
# 初始化城市坐标
points_position = [[12.8, 8.5], [18.4, 3.4], [15.4, 16.6], [18.9, 15.2], [15.5, 11.6], [3.9, 10.6], [10.6, 7.6], [8.6, 8.4], [12.5, 2.1], [
13.8, 5.2], [6.7, 16.9], [14.8, 2.6], [1.8, 8.7], [17.1, 11], [7.4, 1], [0.2, 2.8], [11.9, 19.8], [13.2, 15.1], [6.4, 5.6], [9.6, 14.8]]
# 初始化各个城市需求量
cities_need_goods = [0.1, 0.4, 1.2, 1.5, 0.8, 1.3, 1.7, 0.6,
1.2, 0.4, 0.9, 1.3, 1.3, 1.9, 1.7, 1.1, 1.5, 1.6, 1.7, 1.5]
cities_distance = []
# 获得城市之间的距离
for i in range(1, 21):
cities_distance.append(get_distance_city(points_position, i))
# 定义物流中心的坐标
logistics_center_position = [14.2, 13.1]
logistics_center_to_cities_distance = get_distance_city(
points_position, 0, logistics_center_position)
not_sort_logistics_center_to_cities_distance = copy.deepcopy(
logistics_center_to_cities_distance)
# 初始化城市的到达标记
cities_flag = [0 for i in range(20)]
# 对城市之间的距离以及物流中心到城市的距离进行排序
for city_index in range(20):
cities_distance[city_index] = sort_all_distance_by_elem_1(
cities_distance[city_index])
logistics_center_to_cities_distance = sort_all_distance_by_elem_1(
logistics_center_to_cities_distance)
# print(logistics_center_to_cities_distance)
# print(not_sort_logistics_center_to_cities_distance[2][1])
# 初始化总路程
bound = 0
# 初始化用到货车的数量
number_of_car = 0
# 初始化行驶路线
path = []
for i in range(20):
# 找到离物流中心最近的城市进行配送
to_city = int(logistics_center_to_cities_distance[i][0].split('->')[1])
current_capacity = 0
distance_bound = 0
m = 0
# 判断该城市是否已经配送完成
if cities_flag[to_city - 1] == 0:
path.append('new car')
path.append(to_city)
number_of_car += 1
cities_flag[to_city - 1] = 1
distance_bound += logistics_center_to_cities_distance[i][1]
current_capacity += cities_need_goods[to_city - 1]
# 车辆基于当前的配送城市继续进行配送
while True:
if sum(cities_flag) == 20:
distance_bound += not_sort_logistics_center_to_cities_distance[path[len(
path) - 1] - 1][1]
bound += distance_bound
break
prev_city = to_city
temp = cities_distance[to_city - 1][m][1]
to_city = int(
cities_distance[to_city - 1][m][0].split('->')[1])
if cities_flag[to_city - 1] == 0:
cities_flag[to_city - 1] = 1
path.append(to_city)
return_logistice_center_distance = not_sort_logistics_center_to_cities_distance[
to_city - 1][1]
# 判断是否满足继续配送的条件
# 条件1:当前货车已经行驶的路程+将要行驶至下一城市的路程+返回物流中心的路程是否超过50km
# 条件2:汽车剩余的配送货物是否能满足下一城市的需求量
if distance_bound + temp + return_logistice_center_distance <= 50 and current_capacity + cities_need_goods[to_city - 1] <= 8:
distance_bound += temp
current_capacity += cities_need_goods[to_city - 1]
m = 0
else:
cities_flag[to_city - 1] = 0
path.pop()
return_distance = not_sort_logistics_center_to_cities_distance[path[len(
path) - 1] - 1][1]
distance_bound += return_distance
bound += distance_bound
break
else:
m += 1
to_city = prev_city
if sum(cities_flag) == 20:
break
print('得到的路径长度为: {0}'.format(bound))
print('得到的这条最短路径为: {0}'.format(path))
print('需要的车辆个数为: {0}'.format(number_of_car))
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化