加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
MIT
MIT License Copyright (c) 2017 Francisco Carrillo Pérez Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

简介

本项目探讨扫描电子显微镜(SEM)影像中缺陷区域的侦测。这些图像是用来监测纳米纤维的生产的。图片包含在以下文件中(Carrera2016)。扫描电镜图像有异常。此外,我们还获得了图像的基本真实性,也计算在(Carrera2016)中。 到目前为止,在(Carrera2016)中,他们将该问题作为异常检测问题来处理,而没有在学习(即培训)阶段利用任何缺陷区域的示例。因此,本计画的目标是将缺陷侦测问题作为两类分类问题来处理,其中测试影像被分割成小块(小平方区域),每个小块被分类为正常/异常。总共有46幅图像,其中40幅包含异常,6幅是完全正常的图像。 展开 收起
MIT
取消

发行版

暂无发行版

贡献者

全部

近期动态

加载更多
不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化