代码拉取完成,页面将自动刷新
from network import *
from generate import GenerateNetwork
import multiprocessing
import time
import copy
# print(f"node数量: {node_num}")
# print("各项参数:")
# print(f"时隙数:{max_slot_num},单轮实验次数:{the_num},轮数:{loop_num},weight倍乘系数:1,缩减系数:{Reduction_factor}")
start_time = time.time()
def worker(path_for_getxt, remaining_num_changing, node_num_changing):
counter_bestresponse = 0
counter_pro = 0
counter_step = 0
counter_remaining = 0
waiting_bestresponse = 0
waiting_pro = 0
waiting_step = 0
waiting_remaining = 0
waste_bestresponse = 0
waste_pro = 0
waste_step = 0
waste_remaining = 0
for function in range(4):
if function == 0:
print()
print("BestResponse算法:")
elif function == 1:
print()
print("Pro_first算法:")
elif function == 2:
print()
print("Step_first算法:")
elif function == 3:
print()
print("Remainning_first算法:")
ec_num_counter = 0
waiting_time = 0
el_waste = 0
for_sd_num = 0
for i in range(the_num):
qnetwork = QNetwork(path_for_getxt, remaining_num_changing, node_num_changing)
max_time_slot = max_slot_num
num_timeslot = 0
sd_pair_urgency = {}
while max_time_slot:
sdLList_before = []
if qnetwork.sdList:
sdLList_before = copy.deepcopy(qnetwork.sdList)
if function == 0:
Loop = qnetwork.BestResponse()
# print(f"本时隙经过{Loop}轮循环完成收敛")
elif function == 1:
qnetwork.Pro_first()
elif function == 2:
qnetwork.Step_first()
elif function == 3:
qnetwork.Remainning_first(sd_pair_urgency)
# # print(len(qnetwork.sdList))
# print("el_success", qnetwork.el_success[4])
# print("一次算法执行结束后的elMatrix")
# print(qnetwork.elMatrix)
num_timeslot += 1
max_time_slot -= 1
new_ec_num = (len(sdLList_before)-len(qnetwork.sdList))
waiting_time += new_ec_num*num_timeslot
# print(f"waiting_time {waiting_time}, new_ec_num {new_ec_num}, num_timeslot {num_timeslot}" )
ec_num_counter += (len(qnetwork.sdList_all)-len(qnetwork.sdList))
for_sd_num = len(qnetwork.sdList_all)
# print(ec_num_counter)
# print(f"第{num_timeslot}个时隙")
# print(f"共{len(qnetwork.sdList_all)}个ec")
# print(f"已建成{len(qnetwork.sdList_all)-len(qnetwork.sdList)}个ec")
# print(f"最新建成的ec有{set(tuple(x) for x in sdLList_before) - set(tuple(x) for x in qnetwork.sdList)}")
# print(qnetwork.sdList)
# print("waiting time:", waiting_time)
el_waste += qnetwork.elWaste
# print("el_waste:", el_waste )
if qnetwork.sdList:
waiting_time += len(qnetwork.sdList)*max_slot_num
# print(f"{len(qnetwork.sdList)} ec waiting to be built")
# print("waiting time is :",waiting_time)
# if not qnetwork.sdList:
# print(f"第{i+1}次实验")
# print(f"{num_timeslot}个时隙后, 所有sd对都建成端到端连接")
# print()
# # break
# else:
# print(f"第{i+1}次实验:")
# # print(f"{num_timeslot}个时隙后, 还剩{qnetwork.sdList}共{len(qnetwork.sdList)}个sd对没有成功建成ec")
# print(f"还剩共{len(qnetwork.sdList)}个sd对没有成功建成ec:{qnetwork.sdList}")
# print()
# print(f"平均每次实验建成{ec_num_counter/the_num}个ec")
# print("el_waste after loops:", el_waste )
if function == 0:
counter_bestresponse = ec_num_counter/(the_num*max_slot_num)
print("counter_bestresponse:", counter_bestresponse)
waiting_bestresponse = waiting_time/(the_num*for_sd_num)
print("waiting_bestresponse:", waiting_bestresponse)
waste_bestresponse = el_waste/(the_num)
print("waste_bestresponse:", waste_bestresponse)
if function == 1:
counter_pro = ec_num_counter/(the_num*max_slot_num)
print("counter_pro:", counter_pro)
waiting_pro = waiting_time/(the_num*for_sd_num)
print("waiting_pro:", waiting_pro)
waste_pro = el_waste/(the_num)
print("waste_pro:", waste_pro)
if function == 2:
counter_step = ec_num_counter/(the_num*max_slot_num)
print("counter_step:", counter_step)
waiting_step = waiting_time/(the_num*for_sd_num)
print("waiting_step:", waiting_step)
waste_step = el_waste/(the_num)
print("waste_step:", waste_step)
if function == 3:
counter_remaining = ec_num_counter/(the_num*max_slot_num)
print("counter_remaining:", counter_remaining)
waiting_remaining = waiting_time/(the_num*for_sd_num)
print("waiting_remaining:", waiting_remaining)
waste_remaining = el_waste/(the_num)
print("waste_remaining:", waste_remaining)
# index = counter_bestresponse - counter_step
# print(f"br算法比step算法多建立{index}个ec")
# return index
return counter_bestresponse, counter_pro, counter_step, counter_remaining, \
waiting_bestresponse, waiting_pro, waiting_step, waiting_remaining,\
waste_bestresponse, waste_pro, waste_step, waste_remaining
br = []
pro_f = []
step = []
remaining = []
br_waiting_time = []
pro_f_waiting_time = []
step_waiting_time = []
remaining_waiting_time = []
br_waste = []
pro_f_waste = []
step_waste = []
remaining_waste = []
def write_for_scale():
node_num_index = []
node_num_changing = 45
for i in range(1):
loop_start_time = time.time()
print(f"第{i+1}次生成拓扑")
print(f"节点数量:{node_num_changing}")
GenerateNetwork("./data/generate_data/generate_for_scale.txt", node_num_changing, sd_num, .55, β, 1, pro)
counter_bestresponse, counter_pro, counter_step, counter_remaining,\
waiting_bestresponse, waiting_pro, waiting_step, waiting_remaining,\
waste_bestresponse, waste_pro, waste_step, waste_remaining = worker("./data/generate_data/generate_for_scale.txt", remaining_num, node_num_changing)
node_num_index.append(node_num_changing)
br.append(counter_bestresponse)
pro_f.append(counter_pro)
step.append(counter_step)
remaining.append(counter_remaining)
br_waiting_time.append(waiting_bestresponse)
pro_f_waiting_time.append(waiting_pro)
step_waiting_time.append(waiting_step)
remaining_waiting_time.append(waiting_remaining)
br_waste.append(waste_bestresponse)
pro_f_waste.append(waste_pro)
step_waste.append(waste_step)
remaining_waste.append(waste_remaining)
node_num_changing += 5
loop_end_time = time.time()
print(f"本次循环耗时{loop_end_time-loop_start_time} 秒")
# 将数据写入文件
with open('./data/experiment_data/throughput_scale.txt', 'w') as f:
f.write('node_num_index,br,pro_f,step,remaining \n') # 写入列名
for i in range(len(node_num_index)):
f.write(f'{node_num_index[i]},{br[i]},{pro_f[i]},{step[i]},{remaining[i]}\n') # 写入数据
with open('./data/experiment_data/waiting_scale.txt', 'w') as f:
f.write('node_num_index,br_waiting_time,pro_f_waiting_time,step_waiting_time,remaining_waiting_time \n') # 写入列名
for i in range(len(node_num_index)):
f.write(f'{node_num_index[i]},{br_waiting_time[i]},{pro_f_waiting_time[i]},{step_waiting_time[i]},{remaining_waiting_time[i]}\n') # 写入数据
with open('./data/experiment_data/waste_scale.txt', 'w') as f:
f.write('node_num_index,br_waste,pro_f_waste,step_waste,remaining_waste \n') # 写入列名
for i in range(len(node_num_index)):
f.write(f'{node_num_index[i]},{br_waste[i]},{pro_f_waste[i]},{step_waste[i]},{remaining_waste[i]}\n') # 写入数据
print("实验数据已保存到scale相关txt文件中")
def write_for_workload():
sd_num_index = []
sd_num_changing = 10
for i in range(10):
loop_start_time = time.time()
print(f"第{i+1}次生成拓扑")
print(f"sd对数量:{sd_num_changing}")
GenerateNetwork("./data/generate_data/generate_for_workload.txt", node_num, sd_num_changing, .55, β, 1, pro)
print("拓扑生成完成")
counter_bestresponse, counter_pro, counter_step, counter_remaining,\
waiting_bestresponse, waiting_pro, waiting_step, waiting_remaining,\
waste_bestresponse, waste_pro, waste_step, waste_remaining = worker("./data/generate_data/generate_for_workload.txt", remaining_num, node_num)
print("work函数执行中")
sd_num_index.append(sd_num_changing)
br.append(counter_bestresponse)
pro_f.append(counter_pro)
step.append(counter_step)
remaining.append(counter_remaining)
br_waiting_time.append(waiting_bestresponse)
pro_f_waiting_time.append(waiting_pro)
step_waiting_time.append(waiting_step)
remaining_waiting_time.append(waiting_remaining)
br_waste.append(waste_bestresponse)
pro_f_waste.append(waste_pro)
step_waste.append(waste_step)
remaining_waste.append(waste_remaining)
sd_num_changing += 5
loop_end_time = time.time()
print(f"本次循环耗时{loop_end_time-loop_start_time} 秒")
# 将数据写入文件
with open('./data/experiment_data/throughput_workload.txt', 'w') as f:
f.write('node_num_index,br,pro_f,step,remaining \n') # 写入列名
for i in range(len(sd_num_index)):
f.write(f'{sd_num_index[i]},{br[i]},{pro_f[i]},{step[i]},{remaining[i]}\n') # 写入数据
with open('./data/experiment_data/waiting_workload.txt', 'w') as f:
f.write('node_num_index,br_waiting_time,pro_f_waiting_time,step_waiting_time,remaining_waiting_time \n') # 写入列名
for i in range(len(sd_num_index)):
f.write(f'{sd_num_index[i]},{br_waiting_time[i]},{pro_f_waiting_time[i]},{step_waiting_time[i]},{remaining_waiting_time[i]}\n') # 写入数据
with open('./data/experiment_data/waste_workload.txt', 'w') as f:
f.write('node_num_index,br_waste,pro_f_waste,step_waste,remaining_waste \n') # 写入列名
for i in range(len(sd_num_index)):
f.write(f'{sd_num_index[i]},{br_waste[i]},{pro_f_waste[i]},{step_waste[i]},{remaining_waste[i]}\n') # 写入数据
print("实验数据已保存到workload相关txt文件中")
def write_for_successPro():
pro_index = []
pro_changing = 50
for i in range(10):
loop_start_time = time.time()
print(f"第{i+1}次生成拓扑")
print(f"el平均建成概率:{pro_changing}")
GenerateNetwork("./data/generate_data/generate_for_successPro.txt", node_num, sd_num, .55, β, 1, pro_changing)
counter_bestresponse, counter_pro, counter_step, counter_remaining,\
waiting_bestresponse, waiting_pro, waiting_step, waiting_remaining,\
waste_bestresponse, waste_pro, waste_step, waste_remaining = worker("./data/generate_data/generate_for_successPro.txt", remaining_num, node_num)
pro_index.append(pro_changing)
br.append(counter_bestresponse)
pro_f.append(counter_pro)
step.append(counter_step)
remaining.append(counter_remaining)
br_waiting_time.append(waiting_bestresponse)
pro_f_waiting_time.append(waiting_pro)
step_waiting_time.append(waiting_step)
remaining_waiting_time.append(waiting_remaining)
br_waste.append(waste_bestresponse)
pro_f_waste.append(waste_pro)
step_waste.append(waste_step)
remaining_waste.append(waste_remaining)
pro_changing += 5
loop_end_time = time.time()
print(f"本次循环耗时{loop_end_time-loop_start_time} 秒")
# 将数据写入文件
with open('./data/experiment_data/throughput_successPro.txt', 'w') as f:
f.write('sd_num_index,br,pro_f,step,remaining \n') # 写入列名
for i in range(len(pro_index)):
f.write(f'{pro_index[i]},{br[i]},{pro_f[i]},{step[i]},{remaining[i]}\n') # 写入数据
with open('./data/experiment_data/waiting_successPro.txt', 'w') as f:
f.write('sd_num_index,br_waiting_time,pro_f_waiting_time,step_waiting_time,remaining_waiting_time \n') # 写入列名
for i in range(len(pro_index)):
f.write(f'{pro_index[i]},{br_waiting_time[i]},{pro_f_waiting_time[i]},{step_waiting_time[i]},{remaining_waiting_time[i]}\n') # 写入数据
with open('./data/experiment_data/waste_successPro.txt', 'w') as f:
f.write('sd_num_index,br_waste,pro_f_waste,step_waste,remaining_waste \n') # 写入列名
for i in range(len(pro_index)):
f.write(f'{pro_index[i]},{br_waste[i]},{pro_f_waste[i]},{step_waste[i]},{remaining_waste[i]}\n') # 写入数据
print("实验数据已保存到successPro相关txt文件中")
def write_for_connectivity():
β_index = []
β_changing = 0.06
for i in range(10):
loop_start_time = time.time()
print(f"第{i+1}次生成拓扑")
print(f"β值:{β_changing}")
GenerateNetwork("./data/generate_data/generate_for_connectivity.txt", node_num, sd_num, .55, β_changing, 1, pro)
counter_bestresponse, counter_pro, counter_step, counter_remaining,\
waiting_bestresponse, waiting_pro, waiting_step, waiting_remaining,\
waste_bestresponse, waste_pro, waste_step, waste_remaining = worker("./data/generate_data/generate_for_connectivity.txt", remaining_num, node_num)
β_index.append(β_changing)
br.append(counter_bestresponse)
pro_f.append(counter_pro)
step.append(counter_step)
remaining.append(counter_remaining)
br_waiting_time.append(waiting_bestresponse)
pro_f_waiting_time.append(waiting_pro)
step_waiting_time.append(waiting_step)
remaining_waiting_time.append(waiting_remaining)
br_waste.append(waste_bestresponse)
pro_f_waste.append(waste_pro)
step_waste.append(waste_step)
remaining_waste.append(waste_remaining)
β_changing += 0.01
loop_end_time = time.time()
print(f"本次循环耗时{loop_end_time-loop_start_time} 秒")
# 将数据写入文件
with open('./data/experiment_data/throughput_connectivity.txt', 'w') as f:
f.write('β_index,br,pro_f,step,remaining \n') # 写入列名
for i in range(len(β_index)):
f.write(f'{β_index[i]},{br[i]},{pro_f[i]},{step[i]},{remaining[i]}\n') # 写入数据
with open('./data/experiment_data/waiting_connectivity.txt', 'w') as f:
f.write('β_index,br_waiting_time,pro_f_waiting_time,step_waiting_time,remaining_waiting_time \n') # 写入列名
for i in range(len(β_index)):
f.write(f'{β_index[i]},{br_waiting_time[i]},{pro_f_waiting_time[i]},{step_waiting_time[i]},{remaining_waiting_time[i]}\n') # 写入数据
with open('./data/experiment_data/waste_connectivity.txt', 'w') as f:
f.write('β_index,br_waste,pro_f_waste,step_waste,remaining_waste \n') # 写入列名
for i in range(len(β_index)):
f.write(f'{β_index[i]},{br_waste[i]},{pro_f_waste[i]},{step_waste[i]},{remaining_waste[i]}\n') # 写入数据
print("实验数据已保存到connectivity相关txt文件中")
def write_for_el_remain():
remaining_num_index = []
remaining_num_changing = 2
for i in range(8):
loop_start_time = time.time()
print(f"第{i+1}次生成拓扑")
print(f"el可持续时隙数:{remaining_num_changing}")
GenerateNetwork("./data/generate_data/generate_for_el_remain.txt", node_num, sd_num, .55, β, 1, pro)
counter_bestresponse, counter_pro, counter_step, counter_remaining,\
waiting_bestresponse, waiting_pro, waiting_step, waiting_remaining,\
waste_bestresponse, waste_pro, waste_step, waste_remaining = worker("./data/generate_data/generate_for_el_remain.txt", remaining_num_changing, node_num)
remaining_num_index.append(remaining_num_changing)
br.append(counter_bestresponse)
pro_f.append(counter_pro)
step.append(counter_step)
remaining.append(counter_remaining)
br_waiting_time.append(waiting_bestresponse)
pro_f_waiting_time.append(waiting_pro)
step_waiting_time.append(waiting_step)
remaining_waiting_time.append(waiting_remaining)
br_waste.append(waste_bestresponse)
pro_f_waste.append(waste_pro)
step_waste.append(waste_step)
remaining_waste.append(waste_remaining)
remaining_num_changing += 1
loop_end_time = time.time()
print(f"本次循环耗时{loop_end_time-loop_start_time} 秒")
# 将数据写入文件
with open('./data/experiment_data/throughput_el_remaining.txt', 'w') as f:
f.write('remaining_num_index,br,pro_f,step,remaining \n') # 写入列名
for i in range(len(remaining_num_index)):
f.write(f'{remaining_num_index[i]},{br[i]},{pro_f[i]},{step[i]},{remaining[i]}\n') # 写入数据
with open('./data/experiment_data/waiting_el_remaining.txt', 'w') as f:
f.write('remaining_num_index,br_waiting_time,pro_f_waiting_time,step_waiting_time,remaining_waiting_time \n') # 写入列名
for i in range(len(remaining_num_index)):
f.write(f'{remaining_num_index[i]},{br_waiting_time[i]},{pro_f_waiting_time[i]},{step_waiting_time[i]},{remaining_waiting_time[i]}\n') # 写入数据
with open('./data/experiment_data/waste_el_remaining.txt', 'w') as f:
f.write('remaining_num_index,br_waste,pro_f_waste,step_waste,remaining_waste \n') # 写入列名
for i in range(len(remaining_num_index)):
f.write(f'{remaining_num_index[i]},{br_waste[i]},{pro_f_waste[i]},{step_waste[i]},{remaining_waste[i]}\n') # 写入数据
print("实验数据已保存到el_remaining相关txt文件中")
# index_counter = 0
# for i in range(loop_num):
# print()
# # print(f"第{i+1}次测试")
# index = worker()
# index_counter += index
# print(f"the average of index is {index_counter/loop_num}")
# end_time = time.time()
# total_time = end_time - start_time
# print(f"程序执行总时间为: {total_time} 秒")
# print("默认各项参数:")
# print(f"node数量: {node_num}, sd对数量:{sd_num}, el创建成功率:{pro}, el可持续时隙数:{remaining_num}, 贝塔值:{β}")
# print("各项参数:")
# print(f"时隙数:{max_slot_num},单轮实验次数:{the_num},轮数:{loop_num},el可持续时隙数:{remaining_num}")
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。