加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
aes-encrypt-internal.c 3.12 KB
一键复制 编辑 原始数据 按行查看 历史
/* aes-encrypt-internal.c
Encryption function for the aes/rijndael block cipher.
Copyright (C) 2002, 2013 Niels Möller
This file is part of GNU Nettle.
GNU Nettle is free software: you can redistribute it and/or
modify it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your
option) any later version.
or both in parallel, as here.
GNU Nettle is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received copies of the GNU General Public License and
the GNU Lesser General Public License along with this program. If
not, see http://www.gnu.org/licenses/.
*/
#if HAVE_CONFIG_H
# include "config.h"
#endif
#include <assert.h>
#include "aes-internal.h"
#include "macros.h"
void
_nettle_aes_encrypt(unsigned rounds, const uint32_t *keys,
const struct aes_table *T,
size_t length, uint8_t *dst,
const uint8_t *src)
{
FOR_BLOCKS(length, dst, src, AES_BLOCK_SIZE)
{
uint32_t w0, w1, w2, w3; /* working ciphertext */
uint32_t t0, t1, t2, t3;
unsigned i;
/* Get clear text, using little-endian byte order.
* Also XOR with the first subkey. */
w0 = LE_READ_UINT32(src) ^ keys[0];
w1 = LE_READ_UINT32(src + 4) ^ keys[1];
w2 = LE_READ_UINT32(src + 8) ^ keys[2];
w3 = LE_READ_UINT32(src + 12) ^ keys[3];
for (i = 1; i < rounds; i++)
{
t0 = AES_ROUND(T, w0, w1, w2, w3, keys[4*i]);
t1 = AES_ROUND(T, w1, w2, w3, w0, keys[4*i + 1]);
t2 = AES_ROUND(T, w2, w3, w0, w1, keys[4*i + 2]);
t3 = AES_ROUND(T, w3, w0, w1, w2, keys[4*i + 3]);
/* We could unroll the loop twice, to avoid these
assignments. If all eight variables fit in registers,
that should give a slight speedup. */
w0 = t0;
w1 = t1;
w2 = t2;
w3 = t3;
}
/* Final round */
t0 = AES_FINAL_ROUND(T, w0, w1, w2, w3, keys[4*i]);
t1 = AES_FINAL_ROUND(T, w1, w2, w3, w0, keys[4*i + 1]);
t2 = AES_FINAL_ROUND(T, w2, w3, w0, w1, keys[4*i + 2]);
t3 = AES_FINAL_ROUND(T, w3, w0, w1, w2, keys[4*i + 3]);
LE_WRITE_UINT32(dst, t0);
LE_WRITE_UINT32(dst + 4, t1);
LE_WRITE_UINT32(dst + 8, t2);
LE_WRITE_UINT32(dst + 12, t3);
}
}
/* Some stats, all for AES 128:
A. Table-driven indexing (the approach of the old unified
_aes_crypt function).
B. Unrolling the j-loop.
C. Eliminated the use of IDXk(j) in the main loop.
D. Put wtxt in four scalar variables.
E. Also put t in four scalar variables.
P4 2.2 GHz AMD Duron 1.4GHz
MB/s code size
A 35.9 0x202 17 MB/s
B 37.3 0x334
C 33.0 0x2a7
D 40.7 0x3f9
E 42.9 0x44a 26 MB/s
*/
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化