加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
gru.py 4.81 KB
一键复制 编辑 原始数据 按行查看 历史
VIT 提交于 2024-03-05 07:34 . update code
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, OneHotEncoder
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import TensorDataset, DataLoader
import matplotlib.pyplot as plt
from sklearn.metrics import precision_score, recall_score
from gen_corr import get_corr_feature
# Set random seed for reproducibility
np.random.seed(42)
torch.manual_seed(42)
cols = get_corr_feature()
# Load data
train_df = pd.read_csv('data_c1.csv')
test_df_4 = pd.read_csv('data_c4.csv')
test_df_6 = pd.read_csv('data_c6.csv')
# Separate features and labels
X_train = train_df.drop('label', axis=1)[cols].values
y_train = train_df['label'].values
X_test_4 = test_df_4.drop('label', axis=1)[cols].values
y_test_4 = test_df_4['label'].values
X_test_6 = test_df_6.drop('label', axis=1)[cols].values
y_test_6 = test_df_6['label'].values
# Normalize data
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test_4 = scaler.transform(X_test_4)
X_test_6 = scaler.transform(X_test_6)
# Convert labels to one-hot encoding
encoder = OneHotEncoder(sparse=False)
y_train = encoder.fit_transform(y_train.reshape(-1, 1))
y_test_4 = encoder.transform(y_test_4.reshape(-1, 1))
y_test_6 = encoder.transform(y_test_6.reshape(-1, 1))
# Convert to PyTorch tensors
X_train = torch.tensor(X_train, dtype=torch.float).unsqueeze(1)
y_train = torch.tensor(y_train, dtype=torch.float)
X_test_4 = torch.tensor(X_test_4, dtype=torch.float).unsqueeze(1)
y_test_4 = torch.tensor(y_test_4, dtype=torch.float)
X_test_6 = torch.tensor(X_test_6, dtype=torch.float).unsqueeze(1)
y_test_6 = torch.tensor(y_test_6, dtype=torch.float)
# Create data loaders
batch_size = 32
train_loader = DataLoader(TensorDataset(X_train, y_train), batch_size=batch_size, shuffle=True)
test_loader_4 = DataLoader(TensorDataset(X_test_4, y_test_4), batch_size=batch_size)
test_loader_6 = DataLoader(TensorDataset(X_test_6, y_test_6), batch_size=batch_size)
# Define the GRU model
class GRU(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super(GRU, self).__init__()
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.gru = nn.GRU(input_dim, hidden_dim, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).to(x.device)
out, _ = self.gru(x, h0)
out = self.fc(out[:, -1, :])
return out
# Instantiate the model, loss function, and optimizer
input_dim = X_train.shape[2] # Number of features
hidden_dim = 128 # Dimension of the hidden layer in GRU
output_dim = 3 # Number of output classes
num_layers = 2 # Number of GRU layers
model = GRU(input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim, num_layers=num_layers)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
test_accuracies_4 = []
test_accuracies_6 = []
# Train the model
num_epochs = 30
for epoch in range(num_epochs):
model.train()
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, torch.max(labels, 1)[1])
loss.backward()
optimizer.step()
print(f'Epoch {epoch + 1}, Loss: {loss.item()}')
# Evaluate the model on test set
model.eval()
# Evaluations for test set 4 and test set 6 are similar to above and can be repeated here.vx:15234405680
total = 0
correct = 0
with torch.no_grad():
for inputs, labels in test_loader_4:
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == torch.max(labels, 1)[1]).sum().item()
test_accuracy_4 = correct / total
test_accuracies_4.append(test_accuracy_4)
print(f'Epoch {epoch + 1}, Test Accuracy_4: {test_accuracy_4:.4f}')
total = 0
correct = 0
with torch.no_grad():
for inputs, labels in test_loader_6:
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == torch.max(labels, 1)[1]).sum().item()
test_accuracy_6 = correct / total
test_accuracies_6.append(test_accuracy_6)
print(f'Epoch {epoch + 1}, Test Accuracy_6: {test_accuracy_6:.4f}')
plt.figure(figsize=(12, 5))
plt.plot(test_accuracies_4, label='Test_4 Accuracy', marker='o')
plt.plot(test_accuracies_6, label='Test_6 Accuracy', marker='x')
plt.title('Validation Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.savefig('gru_acc.png')
plt.close()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化