代码拉取完成,页面将自动刷新
同步操作将从 阿白/DPT 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
"""Compute depth maps for images in the input folder.
"""
import os
import glob
import torch
import cv2
import argparse
import util.io
from torchvision.transforms import Compose
from dpt.models import DPTDepthModel
from dpt.midas_net import MidasNet_large
from dpt.transforms import Resize, NormalizeImage, PrepareForNet
#from util.misc import visualize_attention
def run(input_path, output_path, model_path, model_type="dpt_hybrid", optimize=True):
"""Run MonoDepthNN to compute depth maps.
Args:
input_path (str): path to input folder
output_path (str): path to output folder
model_path (str): path to saved model
"""
print("initialize")
# select device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("device: %s" % device)
# load network
if model_type == "dpt_large": # DPT-Large
net_w = net_h = 384
model = DPTDepthModel(
path=model_path,
backbone="vitl16_384",
non_negative=True,
enable_attention_hooks=False,
)
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_hybrid": # DPT-Hybrid
net_w = net_h = 384
model = DPTDepthModel(
path=model_path,
backbone="vitb_rn50_384",
non_negative=True,
enable_attention_hooks=False,
)
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_hybrid_kitti":
net_w = 1216
net_h = 352
model = DPTDepthModel(
path=model_path,
scale=0.00006016,
shift=0.00579,
invert=True,
backbone="vitb_rn50_384",
non_negative=True,
enable_attention_hooks=False,
)
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_hybrid_nyu":
net_w = 640
net_h = 480
model = DPTDepthModel(
path=model_path,
scale=0.000305,
shift=0.1378,
invert=True,
backbone="vitb_rn50_384",
non_negative=True,
enable_attention_hooks=False,
)
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "midas_v21": # Convolutional model
net_w = net_h = 384
model = MidasNet_large(model_path, non_negative=True)
normalization = NormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
else:
assert (
False
), f"model_type '{model_type}' not implemented, use: --model_type [dpt_large|dpt_hybrid|dpt_hybrid_kitti|dpt_hybrid_nyu|midas_v21]"
transform = Compose(
[
Resize(
net_w,
net_h,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="minimal",
image_interpolation_method=cv2.INTER_CUBIC,
),
normalization,
PrepareForNet(),
]
)
model.eval()
if optimize == True and device == torch.device("cuda"):
model = model.to(memory_format=torch.channels_last)
model = model.half()
model.to(device)
# get input
img_names = glob.glob(os.path.join(input_path, "*"))
num_images = len(img_names)
# create output folder
os.makedirs(output_path, exist_ok=True)
print("start processing")
for ind, img_name in enumerate(img_names):
if os.path.isdir(img_name):
continue
print(" processing {} ({}/{})".format(img_name, ind + 1, num_images))
# input
img = util.io.read_image(img_name)
if args.kitti_crop is True:
height, width, _ = img.shape
top = height - 352
left = (width - 1216) // 2
img = img[top : top + 352, left : left + 1216, :]
img_input = transform({"image": img})["image"]
# compute
with torch.no_grad():
sample = torch.from_numpy(img_input).to(device).unsqueeze(0)
if optimize == True and device == torch.device("cuda"):
sample = sample.to(memory_format=torch.channels_last)
sample = sample.half()
prediction = model.forward(sample)
prediction = (
torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=img.shape[:2],
mode="bicubic",
align_corners=False,
)
.squeeze()
.cpu()
.numpy()
)
if model_type == "dpt_hybrid_kitti":
prediction *= 256
if model_type == "dpt_hybrid_nyu":
prediction *= 1000.0
filename = os.path.join(
output_path, os.path.splitext(os.path.basename(img_name))[0]
)
util.io.write_depth(filename, prediction, bits=2, absolute_depth=args.absolute_depth)
print("finished")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-i", "--input_path", default="input", help="folder with input images"
)
parser.add_argument(
"-o",
"--output_path",
default="output_monodepth",
help="folder for output images",
)
parser.add_argument(
"-m", "--model_weights", default=None, help="path to model weights"
)
parser.add_argument(
"-t",
"--model_type",
default="dpt_hybrid",
help="model type [dpt_large|dpt_hybrid|midas_v21]",
)
parser.add_argument("--kitti_crop", dest="kitti_crop", action="store_true")
parser.add_argument("--absolute_depth", dest="absolute_depth", action="store_true")
parser.add_argument("--optimize", dest="optimize", action="store_true")
parser.add_argument("--no-optimize", dest="optimize", action="store_false")
parser.set_defaults(optimize=True)
parser.set_defaults(kitti_crop=False)
parser.set_defaults(absolute_depth=False)
args = parser.parse_args()
default_models = {
"midas_v21": "weights/midas_v21-f6b98070.pt",
"dpt_large": "weights/dpt_large-midas-2f21e586.pt",
"dpt_hybrid": "weights/dpt_hybrid-midas-501f0c75.pt",
"dpt_hybrid_kitti": "weights/dpt_hybrid_kitti-cb926ef4.pt",
"dpt_hybrid_nyu": "weights/dpt_hybrid_nyu-2ce69ec7.pt",
}
if args.model_weights is None:
args.model_weights = default_models[args.model_type]
# set torch options
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
# compute depth maps
run(
args.input_path,
args.output_path,
args.model_weights,
args.model_type,
args.optimize,
)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。