代码拉取完成,页面将自动刷新
import torch
from torch.nn import functional as f
import numpy as np
def affine_based_on_top_left_corner_x_shift(rand_affine):
"""
random affine transformation that only shifts the top-left corner at random along the x direction
:param sig: amount of random x perturbation
:return: forward and backward affine transforms
"""
aff = np.array([[1., -0.5 * rand_affine, 0.5 * rand_affine], [0, 1., 0]], dtype=np.float32)
return torch.from_numpy(aff).clone().cuda()
def apply_resize_and_affine(x, target_size, rand_affine):
aff = affine_based_on_top_left_corner_x_shift(rand_affine)
target_size4d = torch.Size([x.shape[0], x.shape[1], target_size[0], target_size[1]])
grid = f.affine_grid(aff.expand(x.shape[0], -1, -1), target_size4d)
out = f.grid_sample(x, grid, mode='bilinear', padding_mode='border')
return out
def homography_grid(theta, size):
r"""Generates a 2d flow field, given a batch of homography matrices :attr:`theta`
Generally used in conjunction with :func:`grid_sample` to
implement Spatial Transformer Networks.
Args:
theta (Tensor): input batch of homography matrices (:math:`N \times 3 \times 3`)
size (torch.Size): the target output image size (:math:`N \times C \times H \times W`)
Example: torch.Size((32, 3, 24, 24))
Returns:
output (Tensor): output Tensor of size (:math:`N \times H \times W \times 2`)
"""
y, x = torch.meshgrid((torch.linspace(-1., 1., size[-2]), torch.linspace(-1., 1., size[-1])))
n = size[-2] * size[-1]
hxy = torch.ones(n, 3, dtype=torch.float)
hxy[:, 0] = x.contiguous().view(-1)
hxy[:, 1] = y.contiguous().view(-1)
out = hxy[None, ...].cuda().matmul(theta.transpose(1, 2))
# normalize
out = out[:, :, :2] / out[:, :, 2:]
return out.view(theta.shape[0], size[-2], size[-1], 2)
def apply_resize_and_homograhpy(x, target_size, rand_h):
theta = homography_based_on_top_corners_x_shift(rand_h)
target_size4d = torch.Size([x.shape[0], x.shape[1], target_size[0], target_size[1]])
grid = homography_grid(theta.expand(x.shape[0], -1, -1), target_size4d)
out = f.grid_sample(x, grid, mode='bilinear', padding_mode='border')
return out
def homography_based_on_top_corners_x_shift(rand_h):
# play with both top corners
# p = np.array([[1., 1., -1, 0, 0, 0, -(-1. + rand_h[0]), -(-1. + rand_h[0]), -1. + rand_h[0]],
# [0, 0, 0, 1., 1., -1., 1., 1., -1.],
# [-1., 1., -1, 0, 0, 0, 1 + rand_h[1], -(1 + rand_h[1]), 1 + rand_h[1]],
# [0, 0, 0, -1, 1, -1, -1, 1, -1],
# [1, 0, -1, 0, 0, 0, 1, 0, -1],
# [0, 0, 0, 1, 0, -1, 0, 0, 0],
# [-1, 0, -1, 0, 0, 0, 1, 0, 1],
# [0, 0, 0, -1, 0, -1, 0, 0, 0],
# [0, 0, 0, 0, 0, 0, 0, 0, 1]], dtype=np.float32)
# play with top left and bottom right
p = np.array([[1., 1., -1, 0, 0, 0, -(-1. + rand_h[0]), -(-1. + rand_h[0]), -1. + rand_h[0]],
[0, 0, 0, 1., 1., -1., 1., 1., -1.],
[-1., -1., -1, 0, 0, 0, 1 + rand_h[1], 1 + rand_h[1], 1 + rand_h[1]],
[0, 0, 0, -1, -1, -1, 1, 1, 1],
[1, 0, -1, 0, 0, 0, 1, 0, -1],
[0, 0, 0, 1, 0, -1, 0, 0, 0],
[-1, 0, -1, 0, 0, 0, 1, 0, 1],
[0, 0, 0, -1, 0, -1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1]], dtype=np.float32)
b = np.zeros((9, 1), dtype=np.float32)
b[8, 0] = 1.
h = np.dot(np.linalg.inv(p), b)
return torch.from_numpy(h).view(3, 3).clone().cuda()
def apply_resize_and_radial(x, target_size, rand_r):
target_size4d = torch.Size([x.shape[0], x.shape[1], target_size[0], target_size[1]])
grid = make_radial_scale_grid(rand_r, target_size4d)
out = f.grid_sample(x, grid, mode='bilinear', padding_mode='border')
return out
def make_radial_scale_grid(rand_r, size4d):
y, x = torch.meshgrid((torch.linspace(-1., 1., size4d[-2]), torch.linspace(-1., 1., size4d[-1])))
theta = torch.atan2(x, y)
r = torch.sqrt()
'''
def test_time():
def _make_pink_noise(sz_):
with torch.no_grad():
n = 4 # number of scales
pn_ = 0.
sf = 0.375
nsf = 0.5
for sc in range(n):
csz = [int(s_ * sf ** sc) for s_ in sz_[2:]]
cn = torch.randn(sz_[0], sz_[1], csz[0], csz[1]).cuda() * nsf ** (n - sc - 1)
pn_ += f.interpolate(cn, sz_[2:], mode='bilinear', align_corners=False)
return torch.clamp(pn_, -1., 1.)
import torch
from torch.nn import functional as f
from PIL import Image
import util
from InGAN import InGAN
from configs import Config
from skvideo.io import FFmpegWriter
from non_rect import affine_based_on_top_left_corner_x_shift
import numpy as np
from non_rect import *
conf = Config().parse()
gan = InGAN(conf)
sd = torch.load('results/rome_s-aff_Mar_03_16_23_22/checkpoint_0080000.pth.tar')
gan.G.load_state_dict(sd['G'])
def _make_affine_mask(in_mask, target_size, rand_affine):
aff = affine_based_on_top_left_corner_x_shift(rand_affine)
target_size4d = torch.Size([in_mask.shape[0], in_mask.shape[1], target_size[0], target_size[1]])
grid = f.affine_grid(aff.expand(in_mask.shape[0], -1, -1), target_size4d)
out_mask = f.grid_sample(in_mask, grid, mode='bilinear', padding_mode='zeros')
return out_mask
def _make_homography_mask(in_mask, target_size, rand_h):
theta = homography_based_on_top_corners_x_shift(rand_h)
target_size4d = torch.Size([in_mask.shape[0], in_mask.shape[1], target_size[0], target_size[1]])
grid = homography_grid(theta.expand(in_mask.shape[0], -1, -1), target_size4d)
out = f.grid_sample(in_mask, grid, mode='bilinear', padding_mode='zeros')
return out
orig = util.read_shave_tensorize('/home/bagon/develop/waic/InGAN/rome_s.png', 8)
pad = torch.zeros(1, 3, orig.shape[2], orig.shape[3] * 2, dtype=torch.float).cuda()
hp = orig.shape[3] // 2
pad[..., hp:-hp] = orig
in_mask = torch.zeros_like(pad[:, :1, ...])
in_mask[..., hp:-hp] = 1.
pinkn = _make_pink_noise(pad.shape)
writer = FFmpegWriter('vid-h-fruits_ss.mp4', verbosity=1, outputdict={'-b': '30000000', '-r': '10.0'})
n = 400
for i in range(n):
rand_h = (.25 * np.sin(2*np.pi*float(i)/float(0.5*n)), .25 * np.sin(2*np.pi*float(i)/float(0.25*n)))
# a = float(.3 * np.sin(2*np.pi*float(i)/float(0.5*n)))
out = gan.G(pad + 0. * pinkn, pad.shape[2:], rand_h)
# out_mask = _make_affine_mask(in_mask, pad.shape[2:], a)
out_mask = _make_homography_mask(in_mask, pad.shape[2:], rand_h)
frame = util.tensor2im(out*out_mask - 1 + out_mask)
writer.writeFrame(frame)
writer.close()
'''
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。