代码拉取完成,页面将自动刷新
import numpy as np
from PIL import Image
from matplotlib import pyplot as plt, gridspec
import os
import glob
from time import strftime, localtime
from shutil import copy
from scipy.misc import imresize
import torch
def read_data(conf):
input_images = [read_shave_tensorize(path, conf.must_divide) for path in conf.input_image_path]
return input_images
def read_shave_tensorize(path, must_divide):
input_np = (np.array(Image.open(path).convert('RGB')) / 255.0)
input_np_shaved = input_np[:(input_np.shape[0] // must_divide) * must_divide,
:(input_np.shape[1] // must_divide) * must_divide,
:]
input_tensor = im2tensor(input_np_shaved)
return input_tensor
def tensor2im(image_tensors, imtype=np.uint8):
if not isinstance(image_tensors, list):
image_tensors = [image_tensors]
image_numpys = []
for image_tensor in image_tensors:
# Note that tensors are shifted to be in [-1,1]
image_numpy = image_tensor.detach().cpu().float().numpy()
if np.ndim(image_numpy) == 4:
image_numpy = image_numpy.transpose((0, 2, 3, 1))
image_numpy = np.round((image_numpy.squeeze(0) + 1) / 2.0 * 255.0)
image_numpys.append(image_numpy.astype(imtype))
if len(image_numpys) == 1:
image_numpys = image_numpys[0]
return image_numpys
def im2tensor(image_numpy, int_flag=False):
# the int flag indicates whether the input image is integer (and [0,255]) or float ([0,1])
if int_flag:
image_numpy /= 255.0
# Undo the tensor shifting (see tensor2im function)
transformed_image = np.transpose(image_numpy, (2, 0, 1)) * 2.0 - 1.0
return torch.FloatTensor(transformed_image).unsqueeze(0).cuda()
def random_size(orig_size, curriculum=True, i=None, iter_for_max_range=None, must_divide=8.0,
min_scale=0.25, max_scale=2.0, max_transform_magniutude=0.3):
cur_max_scale = 1.0 + (max_scale - 1.0) * np.clip(1.0 * i / iter_for_max_range, 0, 1) if curriculum else max_scale
cur_min_scale = 1.0 + (min_scale - 1.0) * np.clip(1.0 * i / iter_for_max_range, 0, 1) if curriculum else min_scale
cur_max_transform_magnitude = (max_transform_magniutude * np.clip(1.0 * i / iter_for_max_range, 0, 1)
if curriculum else max_transform_magniutude)
# set random transformation magnitude. scalar = affine, pair = homography.
random_affine = -cur_max_transform_magnitude + 2 * cur_max_transform_magnitude * np.random.rand(2)
# set new size for the output image
new_size = np.array(orig_size) * (cur_min_scale + (cur_max_scale - cur_min_scale) * np.random.rand(2))
return tuple(np.uint32(np.ceil(new_size * 1.0 / must_divide) * must_divide)), random_affine
def image_concat(g_preds, d_preds=None, size=None):
hsize = g_preds[0].shape[0] + 6 if size is None else size[0]
results = []
if d_preds is None:
d_preds = [None] * len(g_preds)
for g_pred, d_pred in zip(g_preds, d_preds):
# noinspection PyUnresolvedReferences
dsize = g_pred.shape[1] if size is None or size[1] is None else size[1]
result = np.ones([(1 + (d_pred is not None)) * hsize, dsize, 3]) * 255
if d_pred is not None:
d_pred_new = imresize((np.concatenate([d_pred] * 3, 2) - 128) * 2, g_pred.shape[0:2], interp='nearest')
result[hsize-g_pred.shape[0]:hsize+g_pred.shape[0], :g_pred.shape[1], :] = np.concatenate([g_pred,
d_pred_new], 0)
else:
result[hsize - g_pred.shape[0]:, :, :] = g_pred
results.append(np.uint8(np.round(result)))
return np.concatenate(results, 1)
def save_image(image_tensor, image_path):
image_pil = Image.fromarray(tensor2im(image_tensor), 'RGB')
image_pil.save(image_path)
def get_scale_weights(i, max_i, start_factor, input_shape, min_size, num_scales_limit, scale_factor):
num_scales = np.min([np.int(np.ceil(np.log(np.min(input_shape) * 1.0 / min_size)
/ np.log(scale_factor))), num_scales_limit])
# if i > max_i * 2:
# i = max_i * 2
factor = start_factor ** ((max_i - i) * 1.0 / max_i)
un_normed_weights = factor ** np.arange(num_scales)
weights = un_normed_weights / np.sum(un_normed_weights)
#
# np.clip(i, 0, max_i)
#
# un_normed_weights = np.exp(-((np.arange(num_scales) - (max_i - i) * num_scales * 1.0 / max_i) ** 2) / (2 * sigma ** 2))
# weights = un_normed_weights / np.sum(un_normed_weights)
return weights
class Visualizer:
def __init__(self, gan, conf, test_inputs):
self.gan = gan
self.conf = conf
self.G_loss = [None] * conf.max_iters
self.D_loss_real = [None] * conf.max_iters
self.D_loss_fake = [None] * conf.max_iters
self.test_inputs = test_inputs
self.test_input_sizes = [test_input.shape[2:] for test_input in test_inputs]
if conf.reconstruct_loss_stop_iter > 0:
self.Rec_loss = [None] * conf.max_iters
def recreate_fig(self):
self.fig = plt.figure(figsize=(18, 9))
gs = gridspec.GridSpec(8, 8)
self.result = self.fig.add_subplot(gs[0:8, 0:4])
self.gan_loss = self.fig.add_subplot(gs[0:2, 5:8])
self.reconstruct_loss = self.fig.add_subplot(gs[3:5, 5:8])
self.reconstruction = self.fig.add_subplot(gs[6:8, 5:6])
self.real_example = self.fig.add_subplot(gs[7, 6])
self.d_map_real = self.fig.add_subplot(gs[7, 7])
# First plot data
self.plot_gan_loss = self.gan_loss.plot([], [], 'b-',
[], [], 'c--',
[], [], 'r--')
self.gan_loss.legend(('Generator loss', 'Discriminator loss (real image)', 'Discriminator loss (fake image)'))
self.gan_loss.set_ylim(0, 1)
if self.conf.reconstruct_loss_stop_iter > 0:
self.plot_reconstruct_loss = self.reconstruct_loss.semilogy([], [])
# Set titles
self.gan_loss.set_title('Gan Losses')
self.reconstruct_loss.set_title('Reconstruction Loss')
self.reconstruction.set_title('Reconstruction')
self.d_map_real.set_xlabel('Current Discriminator \n map for real example')
self.real_example.set_xlabel('Real example')
self.result.set_title('Current result')
self.result.axes.get_xaxis().set_visible(False)
self.result.axes.get_yaxis().set_visible(False)
self.reconstruction.axes.get_xaxis().set_visible(False)
self.reconstruction.axes.get_yaxis().set_visible(False)
self.d_map_real.axes.get_yaxis().set_visible(False)
self.real_example.axes.get_yaxis().set_visible(False)
self.result.axes.get_yaxis().set_visible(False)
def test_and_display(self, i):
if not i % self.conf.print_freq and i > 0:
self.G_loss[i-self.conf.print_freq:i] = self.gan.losses_G_gan.detach().cpu().float().numpy().tolist()
self.D_loss_real[i-self.conf.print_freq:i] = self.gan.losses_D_real.detach().cpu().float().numpy().tolist()
self.D_loss_fake[i-self.conf.print_freq:i] = self.gan.losses_D_fake.detach().cpu().float().numpy().tolist()
if self.conf.reconstruct_loss_stop_iter > i:
self.Rec_loss[i-self.conf.print_freq:i] = self.gan.losses_G_reconstruct.detach().cpu().float().numpy().tolist()
if self.conf.reconstruct_loss_stop_iter < i:
print('iter: %d, G_loss: %f, D_loss_real: %f, D_loss_fake: %f, LR: %f' %
(i, self.G_loss[i-1], self.D_loss_real[i-1], self.D_loss_fake[i-1],
self.gan.lr_scheduler_G.get_lr()[0]))
else:
print('iter: %d, G_loss: %f, D_loss_real: %f, D_loss_fake: %f, Rec_loss: %f, LR: %f' %
(i, self.G_loss[i-1], self.D_loss_real[i-1], self.D_loss_fake[i-1], self.Rec_loss[i-1],
self.gan.lr_scheduler_G.get_lr()[0]))
if not i % self.conf.display_freq and i > 0:
plt.gcf().clear()
plt.close()
self.recreate_fig()
# choice = np.random.randint(0, len(self.test_inputs))
# test_input, test_input_size = self.test_inputs[choice], self.test_input_sizes[choice]
# # Determine output size of G (dynamic change)
# output_size, rand_h = random_size(orig_size=test_input_size,
# curriculum=self.conf.curriculum,
# i=i,
# iter_for_max_range=self.conf.iter_for_max_range,
# must_divide=self.conf.must_divide,
# min_scale=self.conf.min_scale,
# max_scale=self.conf.max_scale)
#
# g_preds, d_preds, reconstructs = self.gan.test(test_input, output_size, rand_h, test_input_size)
g_preds = [self.gan.input_tensor_noised, self.gan.G_pred]
d_preds = [self.gan.D.forward(self.gan.input_tensor_noised.detach(), self.gan.scale_weights),
self.gan.d_pred_fake]
reconstructs = self.gan.reconstruct
input_size = self.gan.input_tensor_noised.shape[2:]
result = image_concat(tensor2im(g_preds), tensor2im(d_preds), (input_size[0]*2, input_size[1]*2))
self.plot_gan_loss[0].set_data(range(i), self.G_loss[:i])
self.plot_gan_loss[1].set_data(range(i), self.D_loss_real[:i])
self.plot_gan_loss[2].set_data(range(i), self.D_loss_fake[:i])
self.gan_loss.set_xlim(0, i)
if self.conf.reconstruct_loss_stop_iter > i:
self.plot_reconstruct_loss[0].set_data(range(i), self.Rec_loss[:i])
self.reconstruct_loss.set_ylim(np.min(self.Rec_loss[:i]), np.max(self.Rec_loss[:i]))
self.reconstruct_loss.set_xlim(0, i)
self.result.imshow(np.clip(result, 0, 255), vmin=0, vmax=255)
self.real_example.imshow(np.clip(tensor2im(self.gan.real_example[0:1, :, :, :]), 0, 255), vmin=0, vmax=255)
self.d_map_real.imshow(self.gan.d_pred_real[0:1, :, :, :].detach().cpu().float().numpy().squeeze(),
cmap='gray', vmin=0, vmax=1)
if self.conf.reconstruct_loss_stop_iter > i:
self.reconstruction.imshow(np.clip(image_concat([tensor2im(reconstructs)]), 0, 255), vmin=0, vmax=255)
plt.savefig(self.conf.output_dir_path + '/monitor_%d' % i)
save_image(self.gan.G_pred, self.conf.output_dir_path + '/result_iter_%d.png' % i)
def prepare_result_dir(conf):
# Create results directory
conf.output_dir_path += '/' + conf.name + strftime('_%b_%d_%H_%M_%S', localtime())
os.makedirs(conf.output_dir_path)
# Put a copy of all *.py files in results path, to be able to reproduce experimental results
if conf.create_code_copy:
local_dir = os.path.dirname(__file__)
for py_file in glob.glob(local_dir + '/*.py'):
copy(py_file, conf.output_dir_path)
if conf.resume:
copy(conf.resume, os.path.join(conf.output_dir_path, 'starting_checkpoint.pth.tar'))
return conf.output_dir_path
def homography_based_on_top_corners_x_shift(rand_h):
p = np.array([[1., 1., -1, 0, 0, 0, -(-1. + rand_h[0]), -(-1. + rand_h[0]), -1. + rand_h[0]],
[0, 0, 0, 1., 1., -1., 1., 1., -1.],
[-1., -1., -1, 0, 0, 0, 1 + rand_h[1], 1 + rand_h[1], 1 + rand_h[1]],
[0, 0, 0, -1, -1, -1, 1, 1, 1],
[1, 0, -1, 0, 0, 0, 1, 0, -1],
[0, 0, 0, 1, 0, -1, 0, 0, 0],
[-1, 0, -1, 0, 0, 0, 1, 0, 1],
[0, 0, 0, -1, 0, -1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1]], dtype=np.float32)
b = np.zeros((9, 1), dtype=np.float32)
b[8, 0] = 1.
h = np.dot(np.linalg.inv(p), b)
return torch.from_numpy(h).view(3, 3).cuda()
def homography_grid(theta, size):
r"""Generates a 2d flow field, given a batch of homography matrices :attr:`theta`
Generally used in conjunction with :func:`grid_sample` to
implement Spatial Transformer Networks.
Args:
theta (Tensor): input batch of homography matrices (:math:`N \times 3 \times 3`)
size (torch.Size): the target output image size (:math:`N \times C \times H \times W`)
Example: torch.Size((32, 3, 24, 24))
Returns:
output (Tensor): output Tensor of size (:math:`N \times H \times W \times 2`)
"""
a = 1
b = 1
y, x = torch.meshgrid((torch.linspace(-b, b, np.int(size[-2]*a)), torch.linspace(-b, b, np.int(size[-1]*a))))
n = np.int(size[-2] * a) * np.int(size[-1] * a)
hxy = torch.ones(n, 3, dtype=torch.float)
hxy[:, 0] = x.contiguous().view(-1)
hxy[:, 1] = y.contiguous().view(-1)
out = hxy[None, ...].cuda().matmul(theta.transpose(1, 2))
# normalize
out = out[:, :, :2] / out[:, :, 2:]
return out.view(theta.shape[0], np.int(size[-2]*a), np.int(size[-1]*a), 2)
def hist_match(source, template, mask_3ch):
"""
Adjust the pixel values of a grayscale image such that its histogram
matches that of a target image
Arguments:
-----------
source: np.ndarray
Image to transform; the histogram is computed over the flattened
array
template: np.ndarray
Template image; can have different dimensions to source
Returns:
-----------
matched: np.ndarray
The transformed output image
"""
oldshape = source.shape
source_masked = source.ravel()[mask_3ch.ravel() > 128]
template = template.ravel()
# get the set of unique pixel values and their corresponding indices and
# counts
s_values, bin_idx, s_counts = np.unique(source_masked, return_inverse=True,
return_counts=True)
t_values, t_counts = np.unique(template, return_counts=True)
# take the cumsum of the counts and normalize by the number of pixels to
# get the empirical cumulative distribution functions for the source and
# template images (maps pixel value --> quantile)
s_quantiles = np.cumsum(s_counts).astype(np.float64)
s_quantiles /= s_quantiles[-1]
t_quantiles = np.cumsum(t_counts).astype(np.float64)
t_quantiles /= t_quantiles[-1]
# interpolate linearly to find the pixel values in the template image
# that correspond most closely to the quantiles in the source image
interp_t_values = np.interp(s_quantiles, t_quantiles, t_values)
out = source.copy().ravel()
out[mask_3ch.ravel() > 128] = interp_t_values[bin_idx]
return out.reshape(oldshape)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。