代码拉取完成,页面将自动刷新
# -*- coding: utf-8 -*-
# @Date : 2020/10/28
# @Author : mingming.xu
# @Email : xv44586@gmail.com
# @File : ccf_2020_qa_match_point.py
"""
比赛:[房产行业聊天问答匹配](https://www.datafountain.cn/competitions/474/)
主要思路:将reply顺序拼接到query后面,利用每个reply的[SEP]token做二分类
best val f1: 0.794
A 榜: 0.756
tips:
切换模型时,修改对应config_path/checkpoint_path/dict_path路径以及build_transformer_model 内的参数
"""
import os
from tqdm import tqdm
import numpy as np
from toolkit4nlp.utils import *
from toolkit4nlp.models import *
from toolkit4nlp.layers import *
from toolkit4nlp.optimizers import *
from toolkit4nlp.tokenizers import Tokenizer
from toolkit4nlp.backend import *
batch_size = 16
maxlen = 280
epochs = 10
lr = 1e-5
# bert配置
config_path = '/home/mingming.xu/pretrain/NLP/nezha_base_wwm/bert_config.json'
checkpoint_path = '/home/mingming.xu/pretrain/NLP/nezha_base_wwm/model.ckpt'
dict_path = '/home/mingming.xu/pretrain/NLP/nezha_base_wwm//vocab.txt'
# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)
path = '/home/mingming.xu/datasets/NLP/ccf_qa_match/'
def load_data(train_test='train'):
D = {}
with open(os.path.join(path, train_test, train_test + '.query.tsv')) as f:
for l in f:
span = l.strip().split('\t')
D[span[0]] = {'query': span[1], 'reply': []}
with open(os.path.join(path, train_test, train_test + '.reply.tsv')) as f:
for l in f:
span = l.strip().split('\t')
if len(span) == 4:
q_id, r_id, r, label = span
else:
label = None
q_id, r_id, r = span
D[q_id]['reply'].append([r_id, r, label])
d = []
for k, v in D.items():
v.update({'query_id': k})
d.append(v)
return d
train_data = load_data('train')
test_data = load_data('test')
class data_generator(DataGenerator):
def __iter__(self, shuffle=False):
batch_token_ids, batch_segment_ids, batch_mask, batch_labels = [], [], [], []
for is_end, item in self.get_sample(shuffle):
query = item['query']
reply = item['reply']
token_ids, segment_ids = tokenizer.encode(query)
mask_ids, label_ids = segment_ids[:], segment_ids[:]
for rp in reply:
_, r, label = rp
r_token_ids = tokenizer.encode(r)[0][1:]
r_segment_ids = [1] * len(r_token_ids)
r_mask_ids = [0] * (len(r_token_ids) - 1) + [1] # 每句的句尾sep作为特征
r_label_ids = r_mask_ids[:]
if label and int(label) == 0:
r_label_ids[-1] = 0
token_ids += r_token_ids
segment_ids += r_segment_ids
mask_ids += r_mask_ids
label_ids += r_label_ids
batch_token_ids.append(token_ids)
batch_segment_ids.append(segment_ids)
batch_mask.append(mask_ids)
batch_labels.append(label_ids)
if is_end or len(batch_token_ids) == self.batch_size:
batch_token_ids = pad_sequences(batch_token_ids)
batch_segment_ids = pad_sequences(batch_segment_ids)
batch_mask = pad_sequences(batch_mask)
batch_labels = pad_sequences(batch_labels)
yield [batch_token_ids, batch_segment_ids, batch_labels, batch_mask], None
batch_token_ids, batch_segment_ids, batch_mask, batch_labels = [], [], [], []
train_generator = data_generator(train_data[:5000], batch_size)
valid_generator = data_generator(train_data[5000:], batch_size)
test_generator = data_generator(test_data, batch_size)
class PointLoss(Loss):
def compute_loss(self, inputs, mask=None):
y_pred, y_true, label_mask = inputs
loss = K.binary_crossentropy(y_true, y_pred)
loss = K.sum(loss * label_mask) / K.sum(label_mask)
return loss
class ClsMerge(Layer):
def call(self, inputs):
input_shape = K.shape(inputs)
cls = inputs[:, 0]
cls = K.expand_dims(cls, 1)
cls = K.tile(cls, [1, input_shape[1], 1])
return K.concatenate([inputs, cls], axis=-1)
def compute_output_shape(self, input_shape):
return input_shape[:2] + (input_shape[2] * 2,)
def compute_mask(self, inputs, mask=None):
return mask
class ConcatSeq2Vec(Layer):
def __init__(self, **kwargs):
super(ConcatSeq2Vec, self).__init__(**kwargs)
def build(self, input_shape):
super(ConcatSeq2Vec, self).build(input_shape)
def call(self, x):
seq, vec = x
vec = K.expand_dims(vec, 1)
vec = K.tile(vec, [1, K.shape(seq)[1], 1])
return K.concatenate([seq, vec], 2)
def compute_mask(self, inputs, mask):
return mask[0]
def compute_output_shape(self, input_shape):
return input_shape[0][:-1] + (input_shape[0][-1] + input_shape[1][-1],)
bert = build_transformer_model(
config_path=config_path,
checkpoint_path=checkpoint_path,
# model='bert', # 加载bert/Roberta/ernie
# model='electra', # 加载electra
model='nezha',
)
m_inputs = Input(shape=(None,))
label_inputs = Input(shape=(None,))
output = bert.output
output = Dropout(0.5)(output)
output = Dense(384, activation='tanh')(output)
att = AttentionPooling1D(name='attention_pooling_1')(output)
output = ConcatSeq2Vec()([output, att])
output = DGCNN(dilation_rate=1, dropout_rate=0.1)(output)
output = DGCNN(dilation_rate=2, dropout_rate=0.1)(output)
output = DGCNN(dilation_rate=5, dropout_rate=0.1)(output)
output = Dense(1, activation='sigmoid')(output)
output = Lambda(lambda x: x[:, :, 0])(output)
x = PointLoss(0)([output, label_inputs, m_inputs])
train_model = Model(bert.inputs + [label_inputs, m_inputs], x)
infer_model = Model(bert.inputs, output)
train_model.compile(optimizer=Adam(5e-5))
train_model.summary()
def extract_label(labels, label_masks):
"""
从label序列中提取出每个回复对应的label
"""
labels = labels[label_masks > 0]
labels = list(labels)
p = []
s, e = 0, 0
for lm in label_masks:
e += lm.sum()
p.append(labels[s:e])
s = e
return p
def predict(item):
'''
获取对应回复的label
'''
token_ids, segment_ids, label_mask = item
pred = infer_model.predict([token_ids, segment_ids])
pred = np.round(pred)
return extract_label(pred, label_mask)
def evaluate(data=valid_generator):
P, R, TP = 0., 0., 0.
for (tokens, segments, labels, label_masks), _ in tqdm(data):
y_pred = predict([tokens, segments, label_masks])
y_true = extract_label(labels, label_masks)
y_pred = np.concatenate(y_pred)
y_true = np.concatenate(y_true)
R += y_pred.sum()
P += y_true.sum()
TP += ((y_pred + y_true) > 1).sum()
# print(P, R, TP)
pre = TP / R
rec = TP / P
return 2 * (pre * rec) / (pre + rec)
def write_to_file(pred, file_path='test_submission.tsv'):
"""
将结果写入文件,方便提交
"""
ret = []
for (d, p) in zip(test_data, pred):
one_ret = []
q_id = d['query_id']
reply = d['reply']
for i, r in enumerate(reply):
one_ret.append([q_id, r[0], p[i]])
ret.extend(one_ret)
# write to file
with open(file_path, 'w') as f:
for r in ret:
f.write('\t'.join([str(i) for i in r]) + '\n')
class Evaluator(keras.callbacks.Callback):
def __init__(self):
self.best_f1 = 0.
def on_epoch_end(self, eopch, logs=None):
f1 = evaluate(valid_generator)
if f1 > self.best_f1:
self.best_f1 = f1
self.model.save_weights('best_model.weights')
print('f1: {}, best f1: {}'.format(f1, self.best_f1))
if __name__ == '__main__':
evaluator = Evaluator()
train_model.fit_generator(
train_generator.generator(),
steps_per_epoch=len(train_generator),
epochs=5,
callbacks=[evaluator]
)
# load best weights
train_model.load_weights('best_model.weights')
# pred
test_pred = []
for (t, s, l, m), _ in tqdm(test_generator):
p = predict([t, s, m])
test_pred.extend(p)
# write to file
write_to_file(test_pred)
else:
infer_model.load_weights('best_model.weights')
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。