代码拉取完成,页面将自动刷新
# -*- coding: utf-8 -*-
# @Date : 2020/12/1
# @Author : mingming.xu
# @Email : xv44586@gmail.com
# @File : post-training-wwm-sop.py
"""
训练样本格式为:[query, reply1, reply2,..], 此外替换NSP 为SOP,且SOP 时只替换reply list 顺序
"""
import os
os.environ['TF_KERAS'] = '1' # 必须使用tf.keras
import numpy as np
from tqdm import tqdm
import jieba
import itertools
from toolkit4nlp.utils import DataGenerator, pad_sequences
from toolkit4nlp.models import *
from toolkit4nlp.tokenizers import *
from toolkit4nlp.backend import *
from toolkit4nlp.layers import *
from toolkit4nlp.optimizers import *
# config
path = '/home/mingming.xu/datasets/NLP/ccf_qa_match/'
p = os.path.join(path, 'train', 'train.query.tsv')
config_path = '/home/mingming.xu/pretrain/NLP/nezha_base_wwm/bert_config.json'
checkpoint_path = '/home/mingming.xu/pretrain/NLP/nezha_base_wwm/model.ckpt'
dict_path = '/home/mingming.xu/pretrain/NLP/nezha_base_wwm/vocab.txt'
model_saved_path = './nezha_post_training/wwm-model-add-dict-no-mask-end-sop.ckpt'
new_dict_path = './data/new_dict.txt'
maxlen = 256
batch_size = 16
epochs = 100
learning_rate = 5e-5
# 建立分词器
tokenizer = Tokenizer(dict_path)
# query /reply 拼接作为训练句子
def load_data(train_test='train'):
D = {}
with open(os.path.join(path, train_test, train_test + '.query.tsv')) as f:
for l in f:
span = l.strip().split('\t')
q = span[1]
D[span[0]] = {'query': q, 'reply': []}
with open(os.path.join(path, train_test, train_test + '.reply.tsv')) as f:
for l in f:
span = l.strip().split('\t')
if len(span) == 4:
q_id, r_id, r, label = span
else:
q_id, r_id, r = span
# if len(r) < 4 or (len(r) == 1 and tokenizer._is_punctuation(r)):
# continue
# 补上句号
# if not tokenizer._is_punctuation(list(r)[-1]):
# r += '。'
D[q_id]['reply'].append(r)
d = []
for k, v in D.items():
item = []
l = 0
q = v['query']
replys = v['reply']
l += len(q)
item.append(q)
for r in replys:
lr = len(r)
# if l + lr >maxlen:
# d.append(item)
# item = []
# l = 0
l += lr
item.append(r)
d.append(item)
return d
train_data = load_data('train')
test_data = load_data('test')
data = train_data + test_data
# wwm
jieba.initialize()
new_words = []
with open(new_dict_path) as f:
for l in f:
w = l.strip()
new_words.append(w)
jieba.add_word(w)
words_data = [[jieba.lcut(line) for line in sen] for sen in data]
def shuffle_reply(item):
"""
只打乱reply list的顺序
"""
q, rs = item[0], item[1:]
permuter_rs = list(itertools.permutations(rs))[1:]
if len(permuter_rs) < 1:
print(item)
idx = np.random.choice(len(permuter_rs))
r = permuter_rs[idx]
return [q] + list(r)
def can_mask(token_ids):
if token_ids in (tokenizer._token_start_id, tokenizer._token_mask_id, tokenizer._token_end_id):
return False
return True
def random_masking(lines):
"""对输入进行随机mask
"""
# rands = np.random.random(len(token_ids))
sources, targets = [tokenizer._token_start_id], [0]
segments = [0]
for i, sent in enumerate(lines):
source, target = [], []
segment = []
rands = np.random.random(len(sent))
for r, word in zip(rands, sent):
word_token = tokenizer.encode(word)[0][1:-1]
if r < 0.15 * 0.8:
source.extend(len(word_token) * [tokenizer._token_mask_id])
target.extend(word_token)
elif r < 0.15 * 0.9:
source.extend(word_token)
target.extend(word_token)
elif r < 0.15:
source.extend([np.random.choice(tokenizer._vocab_size - 5) + 5 for _ in range(len(word_token))])
target.extend(word_token)
else:
source.extend(word_token)
target.extend([0] * len(word_token))
# add end token
source.append(tokenizer._token_end_id)
# target.append(tokenizer._token_end_id) # if mask end token, use this line
target.append(0)
if i == 0:
segment = [0] * len(source)
else:
segment = [1] * len(source)
sources.extend(source)
targets.extend(target)
segments.extend(segment)
return sources, targets, segments
class data_generator(DataGenerator):
def __iter__(self, shuffle=False):
batch_token_ids, batch_segment_ids, batch_target_ids, batch_is_masked, batch_nsp = [], [], [], [], []
for is_end, item in self.get_sample(shuffle):
# 50% shuffle order
label = 1
p = np.random.random()
if p < 0.5:
label = 0
item = shuffle_reply(item)
source_tokens, target_tokens, segment_ids = random_masking(item)
is_masked = [0 if i == 0 else 1 for i in target_tokens]
batch_token_ids.append(source_tokens)
batch_segment_ids.append(segment_ids)
batch_target_ids.append(target_tokens)
batch_is_masked.append(is_masked)
batch_nsp.append([label])
if is_end or len(batch_token_ids) == self.batch_size:
batch_token_ids = pad_sequences(batch_token_ids, maxlen=maxlen)
batch_segment_ids = pad_sequences(batch_segment_ids, maxlen=maxlen)
batch_target_ids = pad_sequences(batch_target_ids, maxlen=maxlen)
batch_is_masked = pad_sequences(batch_is_masked, maxlen=maxlen)
batch_nsp = pad_sequences(batch_nsp)
yield [batch_token_ids, batch_segment_ids, batch_target_ids, batch_is_masked, batch_nsp], None
batch_token_ids, batch_segment_ids, batch_target_ids, batch_is_masked = [], [], [], []
batch_nsp = []
train_generator = data_generator(words_data, batch_size)
def build_transformer_model_with_mlm():
"""带mlm的bert模型
"""
bert = build_transformer_model(
config_path,
with_mlm='linear',
with_nsp=True,
model='nezha',
return_keras_model=False,
)
proba = bert.model.output
# print(proba)
# 辅助输入
token_ids = Input(shape=(None,), dtype='int64', name='token_ids') # 目标id
is_masked = Input(shape=(None,), dtype=K.floatx(), name='is_masked') # mask标记
nsp_label = Input(shape=(None,), dtype='int64', name='nsp') # nsp
def mlm_loss(inputs):
"""计算loss的函数,需要封装为一个层
"""
y_true, y_pred, mask = inputs
_, y_pred = y_pred
loss = K.sparse_categorical_crossentropy(
y_true, y_pred, from_logits=True
)
loss = K.sum(loss * mask) / (K.sum(mask) + K.epsilon())
return loss
def nsp_loss(inputs):
"""计算nsp loss的函数,需要封装为一个层
"""
y_true, y_pred = inputs
y_pred, _ = y_pred
loss = K.sparse_categorical_crossentropy(
y_true, y_pred
)
loss = K.mean(loss)
return loss
def mlm_acc(inputs):
"""计算准确率的函数,需要封装为一个层
"""
y_true, y_pred, mask = inputs
_, y_pred = y_pred
y_true = K.cast(y_true, K.floatx())
acc = keras.metrics.sparse_categorical_accuracy(y_true, y_pred)
acc = K.sum(acc * mask) / (K.sum(mask) + K.epsilon())
return acc
def nsp_acc(inputs):
"""计算准确率的函数,需要封装为一个层
"""
y_true, y_pred = inputs
y_pred, _ = y_pred
y_true = K.cast(y_true, K.floatx())
acc = keras.metrics.sparse_categorical_accuracy(y_true, y_pred)
acc = K.mean(acc)
return acc
mlm_loss = Lambda(mlm_loss, name='mlm_loss')([token_ids, proba, is_masked])
mlm_acc = Lambda(mlm_acc, name='mlm_acc')([token_ids, proba, is_masked])
nsp_loss = Lambda(nsp_loss, name='nsp_loss')([nsp_label, proba])
nsp_acc = Lambda(nsp_acc, name='nsp_acc')([nsp_label, proba])
train_model = Model(
bert.model.inputs + [token_ids, is_masked, nsp_label], [mlm_loss, mlm_acc, nsp_loss, nsp_acc]
)
loss = {
'mlm_loss': lambda y_true, y_pred: y_pred,
'mlm_acc': lambda y_true, y_pred: K.stop_gradient(y_pred),
'nsp_loss': lambda y_true, y_pred: y_pred,
'nsp_acc': lambda y_true, y_pred: K.stop_gradient(y_pred),
}
return bert, train_model, loss
bert, train_model, loss = build_transformer_model_with_mlm()
Opt = extend_with_weight_decay(Adam)
Opt = extend_with_gradient_accumulation(Opt)
Opt = extend_with_piecewise_linear_lr(Opt)
opt = Opt(learning_rate=learning_rate,
exclude_from_weight_decay=['Norm', 'bias'],
lr_schedule={int(len(train_generator) * epochs * 0.1): 1.0, len(train_generator) * epochs: 0},
weight_decay_rate=0.01,
grad_accum_steps=2,
)
train_model.compile(loss=loss, optimizer=opt)
# 如果传入权重,则加载。注:须在此处加载,才保证不报错。
if checkpoint_path is not None:
bert.load_weights_from_checkpoint(checkpoint_path)
train_model.summary()
class ModelCheckpoint(keras.callbacks.Callback):
"""
每10个epoch保存一次模型
"""
def __init__(self):
self.loss = 1e6
def on_epoch_end(self, epoch, logs=None):
if logs['loss'] < self.loss:
self.loss = logs['loss']
# print('epoch: {}, loss is : {}, lowest loss is:'.format(epoch, logs['loss'], self.loss))
if (epoch + 1) % 10 == 0:
bert.save_weights_as_checkpoint(model_saved_path + '-{}'.format(epoch + 1))
token_ids, segment_ids = tokenizer.encode(u'看哪个?', '微信您通过一下吧')
token_ids[9] = token_ids[10] = tokenizer._token_mask_id
probs = bert.model.predict([np.array([token_ids]), np.array([segment_ids])])[1]
print(tokenizer.decode(probs[0, 9:11].argmax(axis=1)))
if __name__ == '__main__':
# 保存模型
checkpoint = ModelCheckpoint()
# 记录日志
csv_logger = keras.callbacks.CSVLogger('training.log')
train_model.fit(
train_generator.generator(),
steps_per_epoch=len(train_generator),
epochs=epochs,
callbacks=[checkpoint, csv_logger],
)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。