加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
Dockerfile 7.42 KB
一键复制 编辑 原始数据 按行查看 历史
Xiaobin Zhang 提交于 2020-03-23 23:46 . add tool for official pycoco eval
ARG UBUNTU_VERSION=18.04
ARG ARCH=
ARG CUDA=10.0
FROM nvidia/cuda${ARCH:+-$ARCH}:${CUDA}-base-ubuntu${UBUNTU_VERSION} as base
LABEL maintainer="Xiaobin Zhang <david8862@gmail.com>"
# ARCH and CUDA are specified again because the FROM directive resets ARGs
# (but their default value is retained if set previously)
ARG ARCH
ARG CUDA
ARG CUDNN=7.4.1.5-1
ARG CUDNN_MAJOR_VERSION=7
ARG LIB_DIR_PREFIX=x86_64
# Needed for string substitution
SHELL ["/bin/bash", "-c"]
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential \
cuda-command-line-tools-${CUDA/./-} \
cuda-cublas-dev-${CUDA/./-} \
cuda-cudart-dev-${CUDA/./-} \
cuda-cufft-dev-${CUDA/./-} \
cuda-curand-dev-${CUDA/./-} \
cuda-cusolver-dev-${CUDA/./-} \
cuda-cusparse-dev-${CUDA/./-} \
libcudnn7=${CUDNN}+cuda${CUDA} \
libcudnn7-dev=${CUDNN}+cuda${CUDA} \
libcurl3-dev \
libfreetype6-dev \
libhdf5-serial-dev \
libzmq3-dev \
pkg-config \
rsync \
software-properties-common \
unzip \
zip \
zlib1g-dev \
wget \
git \
&& \
find /usr/local/cuda-${CUDA}/lib64/ -type f -name 'lib*_static.a' -not -name 'libcudart_static.a' -delete && \
rm /usr/lib/${LIB_DIR_PREFIX}-linux-gnu/libcudnn_static_v7.a
# Configure the build for our CUDA configuration.
ENV CI_BUILD_PYTHON python
ENV LD_LIBRARY_PATH /usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/lib64:$LD_LIBRARY_PATH
ENV TF_NEED_CUDA 1
ENV TF_NEED_TENSORRT 1
ENV TF_CUDA_COMPUTE_CAPABILITIES=3.5,5.2,6.0,6.1,7.0
ENV TF_CUDA_VERSION=${CUDA}
ENV TF_CUDNN_VERSION=${CUDNN_MAJOR_VERSION}
# CACHE_STOP is used to rerun future commands, otherwise cloning tensorflow will be cached and will not pull the most recent version
ARG CACHE_STOP=1
# Check out TensorFlow source code if --build-arg CHECKOUT_TF_SRC=1
#ARG CHECKOUT_TF_SRC=0
#RUN test "${CHECKOUT_TF_SRC}" -eq 1 && git clone https://github.com/tensorflow/tensorflow.git /tensorflow_src || true
# Link the libcuda stub to the location where tensorflow is searching for it and reconfigure
# dynamic linker run-time bindings
RUN ln -s /usr/local/cuda/lib64/stubs/libcuda.so /usr/local/cuda/lib64/stubs/libcuda.so.1 \
&& echo "/usr/local/cuda/lib64/stubs" > /etc/ld.so.conf.d/z-cuda-stubs.conf \
&& ldconfig
ARG USE_PYTHON_3_NOT_2
ARG _PY_SUFFIX=${USE_PYTHON_3_NOT_2:+3}
ARG PYTHON=python${_PY_SUFFIX}
ARG PIP=pip${_PY_SUFFIX}
# See http://bugs.python.org/issue19846
ENV LANG C.UTF-8
RUN apt-get update && apt-get install -y \
${PYTHON} \
${PYTHON}-pip
RUN ${PIP} --no-cache-dir install --upgrade \
pip \
setuptools
# Some TF tools expect a "python" binary
RUN ln -s $(which ${PYTHON}) /usr/local/bin/python
RUN apt-get update && apt-get install -y \
iputils-ping \
net-tools \
build-essential \
curl \
git \
wget \
vim \
cmake \
imagemagick \
python3-opencv \
openjdk-8-jdk \
${PYTHON}-dev \
virtualenv \
swig
# Install python packages
RUN ${PIP} --no-cache-dir install \
Pillow \
h5py \
keras_applications \
keras_preprocessing \
matplotlib \
mock \
numpy \
scipy \
sklearn \
pandas \
future \
portpicker \
&& test "${USE_PYTHON_3_NOT_2}" -eq 1 && true || ${PIP} --no-cache-dir install \
tensorflow-gpu \
tensorflow-model-optimization \
keras \
mnn \
pycocotools \
enum34
# Change workdir
WORKDIR /root
# Prepare code & dataset (PascalVOC)
RUN git clone https://github.com/david8862/keras-YOLOv3-model-set.git && \
mkdir -p data/PascalVOC && \
wget -O data/PascalVOC/VOCtrainval_06-Nov-2007.tar http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar && \
wget -O data/PascalVOC/VOCtest_06-Nov-2007.tar http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar && \
wget -O data/PascalVOC/VOCtrainval_11-May-2012.tar http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar && \
wget -O data/PascalVOC/VOC2012test.tar http://pjreddie.com/media/files/VOC2012test.tar && \
pushd data/PascalVOC && \
tar xf VOCtest_06-Nov-2007.tar && \
tar xf VOCtrainval_06-Nov-2007.tar && \
tar xf VOCtrainval_11-May-2012.tar && \
popd && \
pushd keras-YOLOv3-model-set/tools/ && \
python voc_annotation.py --dataset_path=/root/data/PascalVOC/VOCdevkit/ --output_path=/root/data/PascalVOC && \
popd && \
pushd data/PascalVOC && cp -rf 2007_train.txt trainval.txt && cat 2007_val.txt >> trainval.txt && cat 2012_train.txt >> trainval.txt && cat 2012_val.txt >> trainval.txt && \
cp -rf trainval.txt 2007_test.txt /root/keras-YOLOv3-model-set/ && \
popd && \
wget -O keras-YOLOv3-model-set/weights/yolov3.weights https://pjreddie.com/media/files/yolov3.weights && \
wget -O keras-YOLOv3-model-set/weights/yolov3-tiny.weights https://pjreddie.com/media/files/yolov3-tiny.weights && \
wget -O keras-YOLOv3-model-set/weights/yolov3-spp.weights https://pjreddie.com/media/files/yolov3-spp.weights && \
wget -O keras-YOLOv3-model-set/weights/darknet53.conv.74.weights https://pjreddie.com/media/files/darknet53.conv.74 && \
wget -O keras-YOLOv3-model-set/weights/darknet19_448.conv.23.weights https://pjreddie.com/media/files/darknet19_448.conv.23 && \
wget -O keras-YOLOv3-model-set/weights/yolov2.weights http://pjreddie.com/media/files/yolo.weights && \
wget -O keras-YOLOv3-model-set/weights/yolov2-voc.weights http://pjreddie.com/media/files/yolo-voc.weights && \
pushd keras-YOLOv3-model-set/ && \
python tools/convert.py cfg/yolov3.cfg weights/yolov3.weights weights/yolov3.h5 && \
python tools/convert.py cfg/yolov3-tiny.cfg weights/yolov3-tiny.weights weights/yolov3-tiny.h5 && \
python tools/convert.py cfg/yolov3-spp.cfg weights/yolov3-spp.weights weights/yolov3-spp.h5 && \
python tools/convert.py cfg/yolov2.cfg weights/yolov2.weights weights/yolov2.h5 && \
python tools/convert.py cfg/yolov2-voc.cfg weights/yolov2-voc.weights weights/yolov2-voc.h5 && \
python tools/convert.py cfg/darknet53.cfg weights/darknet53.conv.74.weights weights/darknet53.h5 && \
python tools/convert.py cfg/darknet19_448_body.cfg weights/darknet19_448.conv.23.weights weights/darknet19.h5 && \
popd
# Optional: Prepare MS COCO 2017 dataset
#RUN mkdir -p data/COCO2017 && \
#wget -O data/COCO2017/train2017.zip http://images.cocodataset.org/zips/train2017.zip && \
#wget -O data/COCO2017/val2017.zip http://images.cocodataset.org/zips/val2017.zip && \
#wget -O data/COCO2017/test2017.zip http://images.cocodataset.org/zips/test2017.zip && \
#wget -O data/COCO2017/annotations_trainval2017.zip http://images.cocodataset.org/annotations/annotations_trainval2017.zip && \
#wget -O data/COCO2017/image_info_test2017.zip http://images.cocodataset.org/annotations/image_info_test2017.zip && \
#pushd data/COCO2017 && \
#unzip -e train2017.zip && unzip -e val2017.zip && unzip -e test2017.zip && \
#unzip -e annotations_trainval2017.zip && unzip -e image_info_test2017.zip && \
#popd && \
#pushd keras-YOLOv3-model-set/tools/ && \
#python coco_annotation.py --dataset_path=/root/data/COCO2017/ --output_path=/root/data/COCO2017 && \
#pushd data/COCO2017 && cp -rf train2017.txt trainval.txt && cat val2017.txt >> trainval.txt && \
#cp -rf trainval.txt /root/keras-YOLOv3-model-set/ && \
#popd
#COPY bashrc /etc/bash.bashrc
#RUN chmod a+rwx /etc/bash.bashrc
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化