代码拉取完成,页面将自动刷新
同步操作将从 kaanwang/keras-YOLOv3-model-set 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Calculate mAP for YOLO model on some annotation dataset
"""
import os, argparse, time
import numpy as np
import operator
from operator import mul
from functools import reduce
from PIL import Image
from collections import OrderedDict
import matplotlib.pyplot as plt
from tqdm import tqdm
from tensorflow.keras.models import load_model
import tensorflow.keras.backend as K
import tensorflow as tf
import MNN
import onnxruntime
from yolo3.postprocess_np import yolo3_postprocess_np
from yolo2.postprocess_np import yolo2_postprocess_np
from common.data_utils import preprocess_image
from common.utils import get_dataset, get_classes, get_anchors, get_colors, draw_boxes, optimize_tf_gpu, get_custom_objects
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
optimize_tf_gpu(tf, K)
def annotation_parse(annotation_lines, class_names):
'''
parse annotation lines to get image dict and ground truth class dict
image dict would be like:
annotation_records = {
'/path/to/000001.jpg': {'100,120,200,235':'dog', '85,63,156,128':'car', ...},
...
}
ground truth class dict would be like:
classes_records = {
'car': [
['000001.jpg','100,120,200,235'],
['000002.jpg','85,63,156,128'],
...
],
...
}
'''
annotation_records = OrderedDict()
classes_records = OrderedDict({class_name: [] for class_name in class_names})
for line in annotation_lines:
box_records = {}
image_name = line.split(' ')[0]
boxes = line.split(' ')[1:]
for box in boxes:
#strip box coordinate and class
class_name = class_names[int(box.split(',')[-1])]
coordinate = ','.join(box.split(',')[:-1])
box_records[coordinate] = class_name
#append or add ground truth class item
record = [os.path.basename(image_name), coordinate]
if class_name in classes_records:
classes_records[class_name].append(record)
else:
classes_records[class_name] = list([record])
annotation_records[image_name] = box_records
return annotation_records, classes_records
def transform_gt_record(gt_records, class_names):
'''
Transform the Ground Truth records of a image to prediction format, in
order to show & compare in result pic.
Ground Truth records is a dict with format:
{'100,120,200,235':'dog', '85,63,156,128':'car', ...}
Prediction format:
(boxes, classes, scores)
'''
if gt_records is None or len(gt_records) == 0:
return [], [], []
gt_boxes = []
gt_classes = []
gt_scores = []
for (coordinate, class_name) in gt_records.items():
gt_box = [int(x) for x in coordinate.split(',')]
gt_class = class_names.index(class_name)
gt_boxes.append(gt_box)
gt_classes.append(gt_class)
gt_scores.append(1.0)
return np.array(gt_boxes), np.array(gt_classes), np.array(gt_scores)
def yolo_predict_tflite(interpreter, image, anchors, num_classes, conf_threshold, elim_grid_sense):
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# check the type of the input tensor
#if input_details[0]['dtype'] == np.float32:
#floating_model = True
height = input_details[0]['shape'][1]
width = input_details[0]['shape'][2]
model_image_size = (height, width)
image_data = preprocess_image(image, model_image_size)
#origin image shape, in (height, width) format
image_shape = tuple(reversed(image.size))
interpreter.set_tensor(input_details[0]['index'], image_data)
interpreter.invoke()
prediction = []
for output_detail in output_details:
output_data = interpreter.get_tensor(output_detail['index'])
prediction.append(output_data)
prediction.sort(key=lambda x: len(x[0]))
if len(anchors) == 5:
# YOLOv2 use 5 anchors and have only 1 prediction
assert len(prediction) == 1, 'invalid YOLOv2 prediction number.'
pred_boxes, pred_classes, pred_scores = yolo2_postprocess_np(prediction[0], image_shape, anchors, num_classes, model_image_size, max_boxes=100, confidence=conf_threshold, elim_grid_sense=elim_grid_sense)
else:
pred_boxes, pred_classes, pred_scores = yolo3_postprocess_np(prediction, image_shape, anchors, num_classes, model_image_size, max_boxes=100, confidence=conf_threshold, elim_grid_sense=elim_grid_sense)
return pred_boxes, pred_classes, pred_scores
def yolo_predict_mnn(interpreter, session, image, anchors, num_classes, conf_threshold, elim_grid_sense):
# assume only 1 input tensor for image
input_tensor = interpreter.getSessionInput(session)
# get input shape
input_shape = input_tensor.getShape()
if input_tensor.getDimensionType() == MNN.Tensor_DimensionType_Tensorflow:
batch, height, width, channel = input_shape
elif input_tensor.getDimensionType() == MNN.Tensor_DimensionType_Caffe:
batch, channel, height, width = input_shape
else:
# should be MNN.Tensor_DimensionType_Caffe_C4, unsupported now
raise ValueError('unsupported input tensor dimension type')
model_image_size = (height, width)
# prepare input image
image_data = preprocess_image(image, model_image_size)
#origin image shape, in (height, width) format
image_shape = tuple(reversed(image.size))
# use a temp tensor to copy data
tmp_input = MNN.Tensor(input_shape, input_tensor.getDataType(),\
image_data, input_tensor.getDimensionType())
input_tensor.copyFrom(tmp_input)
interpreter.runSession(session)
def get_tensor_list(output_tensors):
# transform the output tensor dict to ordered tensor list, for further postprocess
#
# output tensor list should be like (for YOLOv3):
# [
# (name, tensor) for (13, 13, 3, num_classes+5),
# (name, tensor) for (26, 26, 3, num_classes+5),
# (name, tensor) for (52, 52, 3, num_classes+5)
# ]
output_list = []
for (output_tensor_name, output_tensor) in output_tensors.items():
tensor_shape = output_tensor.getShape()
dim_type = output_tensor.getDimensionType()
tensor_height, tensor_width = tensor_shape[2:4] if dim_type == MNN.Tensor_DimensionType_Caffe else tensor_shape[1:3]
if len(anchors) == 6:
# Tiny YOLOv3
if tensor_height == height//32:
output_list.insert(0, (output_tensor_name, output_tensor))
elif tensor_height == height//16:
output_list.insert(1, (output_tensor_name, output_tensor))
else:
raise ValueError('invalid tensor shape')
elif len(anchors) == 9:
# YOLOv3
if tensor_height == height//32:
output_list.insert(0, (output_tensor_name, output_tensor))
elif tensor_height == height//16:
output_list.insert(1, (output_tensor_name, output_tensor))
elif tensor_height == height//8:
output_list.insert(2, (output_tensor_name, output_tensor))
else:
raise ValueError('invalid tensor shape')
elif len(anchors) == 5:
# YOLOv2 use 5 anchors and have only 1 prediction
assert len(output_tensors) == 1, 'YOLOv2 model should have only 1 output tensor.'
output_list.insert(0, (output_tensor_name, output_tensor))
else:
raise ValueError('invalid anchor number')
return output_list
output_tensors = interpreter.getSessionOutputAll(session)
output_tensor_list = get_tensor_list(output_tensors)
prediction = []
for (output_tensor_name, output_tensor) in output_tensor_list:
output_shape = output_tensor.getShape()
output_elementsize = reduce(mul, output_shape)
assert output_tensor.getDataType() == MNN.Halide_Type_Float
# copy output tensor to host, for further postprocess
tmp_output = MNN.Tensor(output_shape, output_tensor.getDataType(),\
#np.zeros(output_shape, dtype=float), output_tensor.getDimensionType())
tuple(np.zeros(output_shape, dtype=float).reshape(output_elementsize, -1)), output_tensor.getDimensionType())
output_tensor.copyToHostTensor(tmp_output)
#tmp_output.printTensorData()
output_data = np.array(tmp_output.getData(), dtype=float).reshape(output_shape)
# our postprocess code based on TF channel last format, so if the output format
# doesn't match, we need to transpose
if output_tensor.getDimensionType() == MNN.Tensor_DimensionType_Caffe:
output_data = output_data.transpose((0,2,3,1))
elif output_tensor.getDimensionType() == MNN.Tensor_DimensionType_Caffe_C4:
raise ValueError('unsupported output tensor dimension type')
prediction.append(output_data)
prediction.sort(key=lambda x: len(x[0]))
if len(anchors) == 5:
# YOLOv2 use 5 anchors and have only 1 prediction
assert len(prediction) == 1, 'invalid YOLOv2 prediction number.'
pred_boxes, pred_classes, pred_scores = yolo2_postprocess_np(prediction[0], image_shape, anchors, num_classes, model_image_size, max_boxes=100, confidence=conf_threshold, elim_grid_sense=elim_grid_sense)
else:
pred_boxes, pred_classes, pred_scores = yolo3_postprocess_np(prediction, image_shape, anchors, num_classes, model_image_size, max_boxes=100, confidence=conf_threshold, elim_grid_sense=elim_grid_sense)
return pred_boxes, pred_classes, pred_scores
def yolo_predict_pb(model, image, anchors, num_classes, model_image_size, conf_threshold, elim_grid_sense):
# NOTE: TF 1.x frozen pb graph need to specify input/output tensor name
# so we hardcode the input/output tensor names here to get them from model
if len(anchors) == 6:
output_tensor_names = ['graph/predict_conv_1/BiasAdd:0', 'graph/predict_conv_2/BiasAdd:0']
elif len(anchors) == 9:
output_tensor_names = ['graph/predict_conv_1/BiasAdd:0', 'graph/predict_conv_2/BiasAdd:0', 'graph/predict_conv_3/BiasAdd:0']
elif len(anchors) == 5:
# YOLOv2 use 5 anchors and have only 1 prediction
output_tensor_names = ['graph/predict_conv/BiasAdd:0']
else:
raise ValueError('invalid anchor number')
# assume only 1 input tensor for image
input_tensor_name = 'graph/image_input:0'
# get input/output tensors
image_input = model.get_tensor_by_name(input_tensor_name)
output_tensors = [model.get_tensor_by_name(output_tensor_name) for output_tensor_name in output_tensor_names]
batch, height, width, channel = image_input.shape
model_image_size = (int(height), int(width))
# prepare input image
image_data = preprocess_image(image, model_image_size)
#origin image shape, in (height, width) format
image_shape = tuple(reversed(image.size))
with tf.Session(graph=model) as sess:
prediction = sess.run(output_tensors, feed_dict={
image_input: image_data
})
prediction.sort(key=lambda x: len(x[0]))
if len(anchors) == 5:
# YOLOv2 use 5 anchors and have only 1 prediction
assert len(prediction) == 1, 'invalid YOLOv2 prediction number.'
pred_boxes, pred_classes, pred_scores = yolo2_postprocess_np(prediction[0], image_shape, anchors, num_classes, model_image_size, max_boxes=100, confidence=conf_threshold, elim_grid_sense=elim_grid_sense)
else:
pred_boxes, pred_classes, pred_scores = yolo3_postprocess_np(prediction, image_shape, anchors, num_classes, model_image_size, max_boxes=100, confidence=conf_threshold, elim_grid_sense=elim_grid_sense)
return pred_boxes, pred_classes, pred_scores
def yolo_predict_onnx(model, image, anchors, num_classes, conf_threshold, elim_grid_sense):
input_tensors = []
for i, input_tensor in enumerate(model.get_inputs()):
input_tensors.append(input_tensor)
# assume only 1 input tensor for image
assert len(input_tensors) == 1, 'invalid input tensor number.'
batch, height, width, channel = input_tensors[0].shape
model_image_size = (height, width)
# prepare input image
image_data = preprocess_image(image, model_image_size)
#origin image shape, in (height, width) format
image_shape = tuple(reversed(image.size))
feed = {input_tensors[0].name: image_data}
prediction = model.run(None, feed)
prediction.sort(key=lambda x: len(x[0]))
if len(anchors) == 5:
# YOLOv2 use 5 anchors and have only 1 prediction
assert len(prediction) == 1, 'invalid YOLOv2 prediction number.'
pred_boxes, pred_classes, pred_scores = yolo2_postprocess_np(prediction[0], image_shape, anchors, num_classes, model_image_size, max_boxes=100, confidence=conf_threshold, elim_grid_sense=elim_grid_sense)
else:
pred_boxes, pred_classes, pred_scores = yolo3_postprocess_np(prediction, image_shape, anchors, num_classes, model_image_size, max_boxes=100, confidence=conf_threshold, elim_grid_sense=elim_grid_sense)
return pred_boxes, pred_classes, pred_scores
def yolo_predict_keras(model, image, anchors, num_classes, model_image_size, conf_threshold, elim_grid_sense):
image_data = preprocess_image(image, model_image_size)
#origin image shape, in (height, width) format
image_shape = tuple(reversed(image.size))
prediction = model.predict([image_data])
if len(anchors) == 5:
# YOLOv2 use 5 anchors
pred_boxes, pred_classes, pred_scores = yolo2_postprocess_np(prediction, image_shape, anchors, num_classes, model_image_size, max_boxes=100, confidence=conf_threshold, elim_grid_sense=elim_grid_sense)
else:
pred_boxes, pred_classes, pred_scores = yolo3_postprocess_np(prediction, image_shape, anchors, num_classes, model_image_size, max_boxes=100, confidence=conf_threshold, elim_grid_sense=elim_grid_sense)
return pred_boxes, pred_classes, pred_scores
def get_prediction_class_records(model, model_format, annotation_records, anchors, class_names, model_image_size, conf_threshold, elim_grid_sense, save_result):
'''
Do the predict with YOLO model on annotation images to get predict class dict
predict class dict would contain image_name, coordinary and score, and
sorted by score:
pred_classes_records = {
'car': [
['000001.jpg','94,115,203,232',0.98],
['000002.jpg','82,64,154,128',0.93],
...
],
...
}
'''
if model_format == 'MNN':
#MNN inference engine need create session
session = model.createSession()
# create txt file to save prediction result, with
# save format as annotation file but adding score, like:
#
# path/to/img1.jpg 50,100,150,200,0,0.86 30,50,200,120,3,0.95
#
os.makedirs('result', exist_ok=True)
result_file = open(os.path.join('result','detection_result.txt'), 'w')
pred_classes_records = OrderedDict()
pbar = tqdm(total=len(annotation_records), desc='Eval model')
for (image_name, gt_records) in annotation_records.items():
image = Image.open(image_name)
if image.mode != 'RGB':
image = image.convert('RGB')
image_array = np.array(image, dtype='uint8')
# support of tflite model
if model_format == 'TFLITE':
pred_boxes, pred_classes, pred_scores = yolo_predict_tflite(model, image, anchors, len(class_names), conf_threshold, elim_grid_sense)
# support of MNN model
elif model_format == 'MNN':
pred_boxes, pred_classes, pred_scores = yolo_predict_mnn(model, session, image, anchors, len(class_names), conf_threshold, elim_grid_sense)
# support of TF 1.x frozen pb model
elif model_format == 'PB':
pred_boxes, pred_classes, pred_scores = yolo_predict_pb(model, image, anchors, len(class_names), model_image_size, conf_threshold, elim_grid_sense)
# support of ONNX model
elif model_format == 'ONNX':
pred_boxes, pred_classes, pred_scores = yolo_predict_onnx(model, image, anchors, len(class_names), conf_threshold, elim_grid_sense)
# normal keras h5 model
elif model_format == 'H5':
pred_boxes, pred_classes, pred_scores = yolo_predict_keras(model, image, anchors, len(class_names), model_image_size, conf_threshold, elim_grid_sense)
else:
raise ValueError('invalid model format')
#print('Found {} boxes for {}'.format(len(pred_boxes), image_name))
pbar.update(1)
# save prediction result to txt
result_file.write(image_name)
for box, cls, score in zip(pred_boxes, pred_classes, pred_scores):
xmin, ymin, xmax, ymax = box
box_annotation = " %d,%d,%d,%d,%d,%f" % (
xmin, ymin, xmax, ymax, cls, score)
result_file.write(box_annotation)
result_file.write('\n')
result_file.flush()
if save_result:
gt_boxes, gt_classes, gt_scores = transform_gt_record(gt_records, class_names)
result_dir=os.path.join('result','detection')
os.makedirs(result_dir, exist_ok=True)
colors = get_colors(class_names)
image_array = draw_boxes(image_array, gt_boxes, gt_classes, gt_scores, class_names, colors=None, show_score=False)
image_array = draw_boxes(image_array, pred_boxes, pred_classes, pred_scores, class_names, colors)
image = Image.fromarray(image_array)
# here we handle the RGBA image
if(len(image.split()) == 4):
r, g, b, a = image.split()
image = Image.merge("RGB", (r, g, b))
image.save(os.path.join(result_dir, image_name.split(os.path.sep)[-1]))
# Nothing detected
if pred_boxes is None or len(pred_boxes) == 0:
continue
for box, cls, score in zip(pred_boxes, pred_classes, pred_scores):
pred_class_name = class_names[cls]
xmin, ymin, xmax, ymax = box
coordinate = "{},{},{},{}".format(xmin, ymin, xmax, ymax)
#append or add predict class item
record = [os.path.basename(image_name), coordinate, score]
if pred_class_name in pred_classes_records:
pred_classes_records[pred_class_name].append(record)
else:
pred_classes_records[pred_class_name] = list([record])
# sort pred_classes_records for each class according to score
for pred_class_list in pred_classes_records.values():
pred_class_list.sort(key=lambda ele: ele[2], reverse=True)
pbar.close()
result_file.close()
return pred_classes_records
def box_iou(pred_box, gt_box):
'''
Calculate iou for predict box and ground truth box
Param
pred_box: predict box coordinate
(xmin,ymin,xmax,ymax) format
gt_box: ground truth box coordinate
(xmin,ymin,xmax,ymax) format
Return
iou value
'''
# get intersection box
inter_box = [max(pred_box[0], gt_box[0]), max(pred_box[1], gt_box[1]), min(pred_box[2], gt_box[2]), min(pred_box[3], gt_box[3])]
inter_w = max(0.0, inter_box[2] - inter_box[0] + 1)
inter_h = max(0.0, inter_box[3] - inter_box[1] + 1)
# compute overlap (IoU) = area of intersection / area of union
pred_area = (pred_box[2] - pred_box[0] + 1) * (pred_box[3] - pred_box[1] + 1)
gt_area = (gt_box[2] - gt_box[0] + 1) * (gt_box[3] - gt_box[1] + 1)
inter_area = inter_w * inter_h
union_area = pred_area + gt_area - inter_area
return 0 if union_area == 0 else float(inter_area) / float(union_area)
def match_gt_box(pred_record, gt_records, iou_threshold=0.5):
'''
Search gt_records list and try to find a matching box for the predict box
Param
pred_record: with format ['image_file', 'xmin,ymin,xmax,ymax', score]
gt_records: record list with format
[
['image_file', 'xmin,ymin,xmax,ymax', 'usage'],
['image_file', 'xmin,ymin,xmax,ymax', 'usage'],
...
]
iou_threshold:
pred_record and gt_records should be from same annotation image file
Return
matching gt_record index. -1 when there's no matching gt
'''
max_iou = 0.0
max_index = -1
#get predict box coordinate
pred_box = [float(x) for x in pred_record[1].split(',')]
for i, gt_record in enumerate(gt_records):
#get ground truth box coordinate
gt_box = [float(x) for x in gt_record[1].split(',')]
iou = box_iou(pred_box, gt_box)
# if the ground truth has been assigned to other
# prediction, we couldn't reuse it
if iou > max_iou and gt_record[2] == 'unused' and pred_record[0] == gt_record[0]:
max_iou = iou
max_index = i
# drop the prediction if couldn't match iou threshold
if max_iou < iou_threshold:
max_index = -1
return max_index
def voc_ap(rec, prec):
"""
--- Official matlab code VOC2012---
mrec=[0 ; rec ; 1];
mpre=[0 ; prec ; 0];
for i=numel(mpre)-1:-1:1
mpre(i)=max(mpre(i),mpre(i+1));
end
i=find(mrec(2:end)~=mrec(1:end-1))+1;
ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
"""
rec.insert(0, 0.0) # insert 0.0 at begining of list
rec.append(1.0) # insert 1.0 at end of list
mrec = rec[:]
prec.insert(0, 0.0) # insert 0.0 at begining of list
prec.append(0.0) # insert 0.0 at end of list
mpre = prec[:]
"""
This part makes the precision monotonically decreasing
(goes from the end to the beginning)
"""
# matlab indexes start in 1 but python in 0, so I have to do:
# range(start=(len(mpre) - 2), end=0, step=-1)
# also the python function range excludes the end, resulting in:
# range(start=(len(mpre) - 2), end=-1, step=-1)
for i in range(len(mpre) - 2, -1, -1):
mpre[i] = max(mpre[i], mpre[i + 1])
"""
This part creates a list of indexes where the recall changes
"""
# matlab: i=find(mrec(2:end)~=mrec(1:end-1))+1;
i_list = []
for i in range(1, len(mrec)):
if mrec[i] != mrec[i - 1]:
i_list.append(i) # if it was matlab would be i + 1
"""
The Average Precision (AP) is the area under the curve
(numerical integration)
"""
# matlab: ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
ap = 0.0
for i in i_list:
ap += ((mrec[i] - mrec[i - 1]) * mpre[i])
return ap, mrec, mpre
'''
def voc_ap(rec, prec, use_07_metric=False):
if use_07_metric:
# 11 point metric
ap = 0.
for t in np.arange(0., 1.1, 0.1):
if np.sum(rec >= t) == 0:
p = 0
else:
p = np.max(prec[rec >= t])
ap = ap + p / 11.
else:
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
i = np.where(mrec[1:] != mrec[:-1])[0]
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap, mrec, mpre
'''
def get_rec_prec(true_positive, false_positive, gt_records):
'''
Calculate precision/recall based on true_positive, false_positive
result.
'''
cumsum = 0
for idx, val in enumerate(false_positive):
false_positive[idx] += cumsum
cumsum += val
cumsum = 0
for idx, val in enumerate(true_positive):
true_positive[idx] += cumsum
cumsum += val
rec = true_positive[:]
for idx, val in enumerate(true_positive):
rec[idx] = (float(true_positive[idx]) / len(gt_records)) if len(gt_records) != 0 else 0
prec = true_positive[:]
for idx, val in enumerate(true_positive):
prec[idx] = float(true_positive[idx]) / (false_positive[idx] + true_positive[idx])
return rec, prec
def draw_rec_prec(rec, prec, mrec, mprec, class_name, ap):
"""
Draw plot
"""
plt.plot(rec, prec, '-o')
# add a new penultimate point to the list (mrec[-2], 0.0)
# since the last line segment (and respective area) do not affect the AP value
area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]]
area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]]
plt.fill_between(area_under_curve_x, 0, area_under_curve_y, alpha=0.2, edgecolor='r')
# set window title
fig = plt.gcf() # gcf - get current figure
fig.canvas.set_window_title('AP ' + class_name)
# set plot title
plt.title('class: ' + class_name + ' AP = {}%'.format(ap*100))
#plt.suptitle('This is a somewhat long figure title', fontsize=16)
# set axis titles
plt.xlabel('Recall')
plt.ylabel('Precision')
# optional - set axes
axes = plt.gca() # gca - get current axes
axes.set_xlim([0.0,1.0])
axes.set_ylim([0.0,1.05]) # .05 to give some extra space
# Alternative option -> wait for button to be pressed
#while not plt.waitforbuttonpress(): pass # wait for key display
# Alternative option -> normal display
#plt.show()
# save the plot
rec_prec_plot_path = os.path.join('result','classes')
os.makedirs(rec_prec_plot_path, exist_ok=True)
fig.savefig(os.path.join(rec_prec_plot_path, class_name + ".png"))
plt.cla() # clear axes for next plot
import bokeh
import bokeh.io as bokeh_io
import bokeh.plotting as bokeh_plotting
def generate_rec_prec_html(mrec, mprec, scores, class_name, ap):
"""
generate dynamic P-R curve HTML page for each class
"""
rec_prec_plot_path = os.path.join('result' ,'classes')
os.makedirs(rec_prec_plot_path, exist_ok=True)
bokeh_io.output_file(os.path.join(rec_prec_plot_path, class_name + '.html'), title='P-R curve for ' + class_name)
# prepare curve data
area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]]
area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]]
score_on_curve = [0.0] + scores[:-1] + [0.0] + [scores[-1]] + [1.0]
source = bokeh.models.ColumnDataSource(data={
'rec' : area_under_curve_x,
'prec' : area_under_curve_y,
'score' : score_on_curve,
})
# prepare plot figure
plt_title = 'class: ' + class_name + ' AP = {}%'.format(ap*100)
plt = bokeh_plotting.figure(plot_height=200 ,plot_width=200, tools="", toolbar_location=None,
title=plt_title, sizing_mode="scale_width")
plt.background_fill_color = "#f5f5f5"
plt.grid.grid_line_color = "white"
plt.xaxis.axis_label = 'Recall'
plt.yaxis.axis_label = 'Precision'
plt.axis.axis_line_color = None
# draw curve data
plt.line(x='rec', y='prec', line_width=2, color='#ebbd5b', source=source)
plt.add_tools(bokeh.models.HoverTool(
tooltips=[
( 'score', '@score{0.0000 a}'),
],
formatters={
'rec' : 'printf',
'prec' : 'printf',
},
mode='vline'
))
bokeh_io.save(plt)
def adjust_axes(r, t, fig, axes):
"""
Plot - adjust axes
"""
# get text width for re-scaling
bb = t.get_window_extent(renderer=r)
text_width_inches = bb.width / fig.dpi
# get axis width in inches
current_fig_width = fig.get_figwidth()
new_fig_width = current_fig_width + text_width_inches
propotion = new_fig_width / current_fig_width
# get axis limit
x_lim = axes.get_xlim()
axes.set_xlim([x_lim[0], x_lim[1]*propotion])
def draw_plot_func(dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, true_p_bar):
"""
Draw plot using Matplotlib
"""
# sort the dictionary by decreasing value, into a list of tuples
sorted_dic_by_value = sorted(dictionary.items(), key=operator.itemgetter(1))
# unpacking the list of tuples into two lists
sorted_keys, sorted_values = zip(*sorted_dic_by_value)
#
if true_p_bar != "":
"""
Special case to draw in (green=true predictions) & (red=false predictions)
"""
fp_sorted = []
tp_sorted = []
for key in sorted_keys:
fp_sorted.append(dictionary[key] - true_p_bar[key])
tp_sorted.append(true_p_bar[key])
plt.barh(range(n_classes), fp_sorted, align='center', color='crimson', label='False Predictions')
plt.barh(range(n_classes), tp_sorted, align='center', color='forestgreen', label='True Predictions', left=fp_sorted)
# add legend
plt.legend(loc='lower right')
"""
Write number on side of bar
"""
fig = plt.gcf() # gcf - get current figure
axes = plt.gca()
r = fig.canvas.get_renderer()
for i, val in enumerate(sorted_values):
fp_val = fp_sorted[i]
tp_val = tp_sorted[i]
fp_str_val = " " + str(fp_val)
tp_str_val = fp_str_val + " " + str(tp_val)
# trick to paint multicolor with offset:
# first paint everything and then repaint the first number
t = plt.text(val, i, tp_str_val, color='forestgreen', va='center', fontweight='bold')
plt.text(val, i, fp_str_val, color='crimson', va='center', fontweight='bold')
if i == (len(sorted_values)-1): # largest bar
adjust_axes(r, t, fig, axes)
else:
plt.barh(range(n_classes), sorted_values, color=plot_color)
"""
Write number on side of bar
"""
fig = plt.gcf() # gcf - get current figure
axes = plt.gca()
r = fig.canvas.get_renderer()
for i, val in enumerate(sorted_values):
str_val = " " + str(val) # add a space before
if val < 1.0:
str_val = " {0:.2f}".format(val)
t = plt.text(val, i, str_val, color=plot_color, va='center', fontweight='bold')
# re-set axes to show number inside the figure
if i == (len(sorted_values)-1): # largest bar
adjust_axes(r, t, fig, axes)
# set window title
fig.canvas.set_window_title(window_title)
# write classes in y axis
tick_font_size = 12
plt.yticks(range(n_classes), sorted_keys, fontsize=tick_font_size)
"""
Re-scale height accordingly
"""
init_height = fig.get_figheight()
# comput the matrix height in points and inches
dpi = fig.dpi
height_pt = n_classes * (tick_font_size * 1.4) # 1.4 (some spacing)
height_in = height_pt / dpi
# compute the required figure height
top_margin = 0.15 # in percentage of the figure height
bottom_margin = 0.05 # in percentage of the figure height
figure_height = height_in / (1 - top_margin - bottom_margin)
# set new height
if figure_height > init_height:
fig.set_figheight(figure_height)
# set plot title
plt.title(plot_title, fontsize=14)
# set axis titles
# plt.xlabel('classes')
plt.xlabel(x_label, fontsize='large')
# adjust size of window
fig.tight_layout()
# save the plot
fig.savefig(output_path)
# show image
if to_show:
plt.show()
# close the plot
plt.close()
def calc_AP(gt_records, pred_records, class_name, iou_threshold, show_result):
'''
Calculate AP value for one class records
Param
gt_records: ground truth records list for one class, with format:
[
['image_file', 'xmin,ymin,xmax,ymax'],
['image_file', 'xmin,ymin,xmax,ymax'],
...
]
pred_records: predict records for one class, with format (in score descending order):
[
['image_file', 'xmin,ymin,xmax,ymax', score],
['image_file', 'xmin,ymin,xmax,ymax', score],
...
]
Return
AP value for the class
'''
# append usage flag in gt_records for matching gt search
gt_records = [gt_record + ['unused'] for gt_record in gt_records]
# prepare score list for generating P-R html page
scores = [pred_record[2] for pred_record in pred_records]
# init true_positive and false_positive list
nd = len(pred_records) # number of predict data
true_positive = [0] * nd
false_positive = [0] * nd
true_positive_count = 0
# assign predictions to ground truth objects
for idx, pred_record in enumerate(pred_records):
# filter out gt record from same image
image_gt_records = [ gt_record for gt_record in gt_records if gt_record[0] == pred_record[0]]
i = match_gt_box(pred_record, image_gt_records, iou_threshold=iou_threshold)
if i != -1:
# find a valid gt obj to assign, set
# true_positive list and mark image_gt_records.
#
# trick: gt_records will also be marked
# as 'used', since image_gt_records is a
# reference list
image_gt_records[i][2] = 'used'
true_positive[idx] = 1
true_positive_count += 1
else:
false_positive[idx] = 1
# compute precision/recall
rec, prec = get_rec_prec(true_positive, false_positive, gt_records)
ap, mrec, mprec = voc_ap(rec, prec)
if show_result:
draw_rec_prec(rec, prec, mrec, mprec, class_name, ap)
generate_rec_prec_html(mrec, mprec, scores, class_name, ap)
return ap, true_positive_count
def plot_Pascal_AP_result(count_images, count_true_positives, num_classes,
gt_counter_per_class, pred_counter_per_class,
precision_dict, recall_dict, mPrec, mRec,
APs, mAP, iou_threshold):
'''
Plot the total number of occurences of each class in the ground-truth
'''
window_title = "Ground-Truth Info"
plot_title = "Ground-Truth\n" + "(" + str(count_images) + " files and " + str(num_classes) + " classes)"
x_label = "Number of objects per class"
output_path = os.path.join('result','Ground-Truth_Info.png')
draw_plot_func(gt_counter_per_class, num_classes, window_title, plot_title, x_label, output_path, to_show=False, plot_color='forestgreen', true_p_bar='')
'''
Plot the total number of occurences of each class in the "predicted" folder
'''
window_title = "Predicted Objects Info"
# Plot title
plot_title = "Predicted Objects\n" + "(" + str(count_images) + " files and "
count_non_zero_values_in_dictionary = sum(int(x) > 0 for x in list(pred_counter_per_class.values()))
plot_title += str(count_non_zero_values_in_dictionary) + " detected classes)"
# end Plot title
x_label = "Number of objects per class"
output_path = os.path.join('result','Predicted_Objects_Info.png')
draw_plot_func(pred_counter_per_class, len(pred_counter_per_class), window_title, plot_title, x_label, output_path, to_show=False, plot_color='forestgreen', true_p_bar=count_true_positives)
'''
Draw mAP plot (Show AP's of all classes in decreasing order)
'''
window_title = "mAP"
plot_title = "mAP@IoU={0}: {1:.2f}%".format(iou_threshold, mAP)
x_label = "Average Precision"
output_path = os.path.join('result','mAP.png')
draw_plot_func(APs, num_classes, window_title, plot_title, x_label, output_path, to_show=False, plot_color='royalblue', true_p_bar='')
'''
Draw Precision plot (Show Precision of all classes in decreasing order)
'''
window_title = "Precision"
plot_title = "mPrec@IoU={0}: {1:.2f}%".format(iou_threshold, mPrec)
x_label = "Precision rate"
output_path = os.path.join('result','Precision.png')
draw_plot_func(precision_dict, len(precision_dict), window_title, plot_title, x_label, output_path, to_show=False, plot_color='royalblue', true_p_bar='')
'''
Draw Recall plot (Show Recall of all classes in decreasing order)
'''
window_title = "Recall"
plot_title = "mRec@IoU={0}: {1:.2f}%".format(iou_threshold, mRec)
x_label = "Recall rate"
output_path = os.path.join('result','Recall.png')
draw_plot_func(recall_dict, len(recall_dict), window_title, plot_title, x_label, output_path, to_show=False, plot_color='royalblue', true_p_bar='')
def get_mean_metric(metric_records, gt_classes_records):
'''
Calculate mean metric, but only count classes which have ground truth object
Param
metric_records: metric dict like:
metric_records = {
'aeroplane': 0.79,
'bicycle': 0.79,
...
'tvmonitor': 0.71,
}
gt_classes_records: ground truth class dict like:
gt_classes_records = {
'car': [
['000001.jpg','100,120,200,235'],
['000002.jpg','85,63,156,128'],
...
],
...
}
Return
mean_metric: float value of mean metric
'''
mean_metric = 0.0
count = 0
for (class_name, metric) in metric_records.items():
if (class_name in gt_classes_records) and (len(gt_classes_records[class_name]) != 0):
mean_metric += metric
count += 1
mean_metric = (mean_metric/count)*100 if count != 0 else 0.0
return mean_metric
def compute_mAP_PascalVOC(annotation_records, gt_classes_records, pred_classes_records, class_names, iou_threshold, show_result=True):
'''
Compute PascalVOC style mAP
'''
APs = {}
count_true_positives = {class_name: 0 for class_name in list(gt_classes_records.keys())}
#get AP value for each of the ground truth classes
for _, class_name in enumerate(class_names):
#if there's no gt obj for a class, record 0
if class_name not in gt_classes_records:
APs[class_name] = 0.
continue
gt_records = gt_classes_records[class_name]
#if we didn't detect any obj for a class, record 0
if class_name not in pred_classes_records:
APs[class_name] = 0.
continue
pred_records = pred_classes_records[class_name]
ap, true_positive_count = calc_AP(gt_records, pred_records, class_name, iou_threshold, show_result)
APs[class_name] = ap
count_true_positives[class_name] = true_positive_count
#sort AP result by value, in descending order
APs = OrderedDict(sorted(APs.items(), key=operator.itemgetter(1), reverse=True))
#get mAP percentage value
#mAP = np.mean(list(APs.values()))*100
mAP = get_mean_metric(APs, gt_classes_records)
#get GroundTruth count per class
gt_counter_per_class = {}
for (class_name, info_list) in gt_classes_records.items():
gt_counter_per_class[class_name] = len(info_list)
#get Precision count per class
pred_counter_per_class = {class_name: 0 for class_name in list(gt_classes_records.keys())}
for (class_name, info_list) in pred_classes_records.items():
pred_counter_per_class[class_name] = len(info_list)
#get the precision & recall
precision_dict = {}
recall_dict = {}
for (class_name, gt_count) in gt_counter_per_class.items():
if (class_name not in pred_counter_per_class) or (class_name not in count_true_positives) or pred_counter_per_class[class_name] == 0:
precision_dict[class_name] = 0.
else:
precision_dict[class_name] = float(count_true_positives[class_name]) / pred_counter_per_class[class_name]
if class_name not in count_true_positives or gt_count == 0:
recall_dict[class_name] = 0.
else:
recall_dict[class_name] = float(count_true_positives[class_name]) / gt_count
#get mPrec, mRec
#mPrec = np.mean(list(precision_dict.values()))*100
#mRec = np.mean(list(recall_dict.values()))*100
mPrec = get_mean_metric(precision_dict, gt_classes_records)
mRec = get_mean_metric(recall_dict, gt_classes_records)
if show_result:
plot_Pascal_AP_result(len(annotation_records), count_true_positives, len(gt_classes_records),
gt_counter_per_class, pred_counter_per_class,
precision_dict, recall_dict, mPrec, mRec,
APs, mAP, iou_threshold)
#show result
print('\nPascal VOC AP evaluation')
for (class_name, AP) in APs.items():
print('%s: AP %.4f, precision %.4f, recall %.4f' % (class_name, AP, precision_dict[class_name], recall_dict[class_name]))
print('mAP@IoU=%.2f result: %f' % (iou_threshold, mAP))
print('mPrec@IoU=%.2f result: %f' % (iou_threshold, mPrec))
print('mRec@IoU=%.2f result: %f' % (iou_threshold, mRec))
#return mAP percentage value
return mAP, APs
def compute_AP_COCO(annotation_records, gt_classes_records, pred_classes_records, class_names, show_result=True):
'''
Compute MSCOCO AP list on AP 0.5:0.05:0.95
'''
iou_threshold_list = np.arange(0.50, 1.00, 0.05)
APs = {}
pbar = tqdm(total=len(iou_threshold_list), desc='Eval COCO')
for iou_threshold in iou_threshold_list:
iou_threshold = round(iou_threshold, 2)
mAP, _ = compute_mAP_PascalVOC(annotation_records, gt_classes_records, pred_classes_records, class_names, iou_threshold, show_result=False)
APs[iou_threshold] = round(mAP, 6)
pbar.update(1)
pbar.close()
#sort AP result by value, in descending order
APs = OrderedDict(sorted(APs.items(), key=operator.itemgetter(1), reverse=True))
#get overall AP percentage value
AP = np.mean(list(APs.values()))
if show_result:
'''
Draw MS COCO AP plot
'''
os.makedirs('result', exist_ok=True)
window_title = "MSCOCO AP on different IOU"
plot_title = "COCO AP = {0:.2f}%".format(AP)
x_label = "Average Precision"
output_path = os.path.join('result','COCO_AP.png')
draw_plot_func(APs, len(APs), window_title, plot_title, x_label, output_path, to_show=False, plot_color='royalblue', true_p_bar='')
print('\nMS COCO AP evaluation')
for (iou_threshold, AP_value) in APs.items():
print('IOU %.2f: AP %f' % (iou_threshold, AP_value))
print('total AP: %f' % (AP))
#return AP percentage value
return AP, APs
def compute_AP_COCO_Scale(annotation_records, scale_gt_classes_records, pred_classes_records, class_names):
'''
Compute MSCOCO AP on different scale object: small, medium, large
'''
scale_APs = {}
for scale_key in ['small','medium','large']:
gt_classes_records = scale_gt_classes_records[scale_key]
scale_AP, _ = compute_AP_COCO(annotation_records, gt_classes_records, pred_classes_records, class_names, show_result=False)
scale_APs[scale_key] = round(scale_AP, 4)
#get overall AP percentage value
scale_mAP = np.mean(list(scale_APs.values()))
'''
Draw Scale AP plot
'''
os.makedirs('result', exist_ok=True)
window_title = "MSCOCO AP on different scale"
plot_title = "scale mAP = {0:.2f}%".format(scale_mAP)
x_label = "Average Precision"
output_path = os.path.join('result','COCO_scale_AP.png')
draw_plot_func(scale_APs, len(scale_APs), window_title, plot_title, x_label, output_path, to_show=False, plot_color='royalblue', true_p_bar='')
'''
Draw Scale Object Sum plot
'''
for scale_key in ['small','medium','large']:
gt_classes_records = scale_gt_classes_records[scale_key]
gt_classes_sum = {}
for _, class_name in enumerate(class_names):
# summarize the gt object number for every class on different scale
gt_classes_sum[class_name] = np.sum(len(gt_classes_records[class_name])) if class_name in gt_classes_records else 0
total_sum = np.sum(list(gt_classes_sum.values()))
window_title = "{} object number".format(scale_key)
plot_title = "total {} object number = {}".format(scale_key, total_sum)
x_label = "Object Number"
output_path = os.path.join('result','{}_object_number.png'.format(scale_key))
draw_plot_func(gt_classes_sum, len(gt_classes_sum), window_title, plot_title, x_label, output_path, to_show=False, plot_color='royalblue', true_p_bar='')
print('\nMS COCO AP evaluation on different scale')
for (scale, AP_value) in scale_APs.items():
print('%s scale: AP %f' % (scale, AP_value))
print('total AP: %f' % (scale_mAP))
def add_gt_record(gt_records, gt_record, class_name):
# append or add ground truth class item
if class_name in gt_records:
gt_records[class_name].append(gt_record)
else:
gt_records[class_name] = list([gt_record])
return gt_records
def get_scale_gt_dict(gt_classes_records, class_names):
'''
Get ground truth class dict on different object scales, according to MS COCO metrics definition:
small objects: area < 32^2
medium objects: 32^2 < area < 96^2
large objects: area > 96^2
input gt_classes_records would be like:
gt_classes_records = {
'car': [
['000001.jpg','100,120,200,235'],
['000002.jpg','85,63,156,128'],
...
],
...
}
return a record dict with following format, for AP/AR eval on different scale:
scale_gt_classes_records = {
'small': {
'car': [
['000001.jpg','100,120,200,235'],
['000002.jpg','85,63,156,128'],
...
],
...
},
'medium': {
'car': [
['000003.jpg','100,120,200,235'],
['000004.jpg','85,63,156,128'],
...
],
...
},
'large': {
'car': [
['000005.jpg','100,120,200,235'],
['000006.jpg','85,63,156,128'],
...
],
...
}
}
'''
scale_gt_classes_records = {}
small_gt_records = {}
medium_gt_records = {}
large_gt_records = {}
for _, class_name in enumerate(class_names):
gt_records = gt_classes_records[class_name]
for (image_file, box) in gt_records:
# get box area based on coordinate
box_coord = [int(p) for p in box.split(',')]
box_area = (box_coord[2] - box_coord[0]) * (box_coord[3] - box_coord[1])
# add to corresponding gt records dict according to area size
if box_area <= 32*32:
small_gt_records = add_gt_record(small_gt_records, [image_file, box], class_name)
elif box_area > 32*32 and box_area <= 96*96:
medium_gt_records = add_gt_record(medium_gt_records, [image_file, box], class_name)
elif box_area > 96*96:
large_gt_records = add_gt_record(large_gt_records, [image_file, box], class_name)
# form up scale_gt_classes_records
scale_gt_classes_records['small'] = small_gt_records
scale_gt_classes_records['medium'] = medium_gt_records
scale_gt_classes_records['large'] = large_gt_records
return scale_gt_classes_records
def eval_AP(model, model_format, annotation_lines, anchors, class_names, model_image_size, eval_type, iou_threshold, conf_threshold, elim_grid_sense, save_result):
'''
Compute AP for detection model on annotation dataset
'''
annotation_records, gt_classes_records = annotation_parse(annotation_lines, class_names)
pred_classes_records = get_prediction_class_records(model, model_format, annotation_records, anchors, class_names, model_image_size, conf_threshold, elim_grid_sense, save_result)
AP = 0.0
if eval_type == 'VOC':
AP, _ = compute_mAP_PascalVOC(annotation_records, gt_classes_records, pred_classes_records, class_names, iou_threshold)
elif eval_type == 'COCO':
AP, _ = compute_AP_COCO(annotation_records, gt_classes_records, pred_classes_records, class_names)
# get AP for different scale: small, medium, large
scale_gt_classes_records = get_scale_gt_dict(gt_classes_records, class_names)
compute_AP_COCO_Scale(annotation_records, scale_gt_classes_records, pred_classes_records, class_names)
else:
raise ValueError('Unsupported evaluation type')
return AP
#load TF 1.x frozen pb graph
def load_graph(model_path):
# We parse the graph_def file
with tf.gfile.GFile(model_path, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
# We load the graph_def in the default graph
with tf.Graph().as_default() as graph:
tf.import_graph_def(
graph_def,
input_map=None,
return_elements=None,
name="graph",
op_dict=None,
producer_op_list=None
)
return graph
def load_eval_model(model_path):
# support of tflite model
if model_path.endswith('.tflite'):
from tensorflow.lite.python import interpreter as interpreter_wrapper
model = interpreter_wrapper.Interpreter(model_path=model_path)
model.allocate_tensors()
model_format = 'TFLITE'
# support of MNN model
elif model_path.endswith('.mnn'):
model = MNN.Interpreter(model_path)
model_format = 'MNN'
# support of TF 1.x frozen pb model
elif model_path.endswith('.pb'):
model = load_graph(model_path)
model_format = 'PB'
# support of ONNX model
elif model_path.endswith('.onnx'):
model = onnxruntime.InferenceSession(model_path)
model_format = 'ONNX'
# normal keras h5 model
elif model_path.endswith('.h5'):
custom_object_dict = get_custom_objects()
model = load_model(model_path, compile=False, custom_objects=custom_object_dict)
model_format = 'H5'
K.set_learning_phase(0)
else:
raise ValueError('invalid model file')
return model, model_format
def main():
# class YOLO defines the default value, so suppress any default here
parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS, description='evaluate YOLO model (h5/pb/onnx/tflite/mnn) with test dataset')
'''
Command line options
'''
parser.add_argument(
'--model_path', type=str, required=True,
help='path to model file')
parser.add_argument(
'--anchors_path', type=str, required=True,
help='path to anchor definitions')
parser.add_argument(
'--classes_path', type=str, required=False,
help='path to class definitions, default=%(default)s', default=os.path.join('configs' , 'voc_classes.txt'))
parser.add_argument(
'--annotation_file', type=str, required=True,
help='test annotation txt file')
parser.add_argument(
'--eval_type', type=str, required=False, choices=['VOC', 'COCO'],
help='evaluation type (VOC/COCO), default=%(default)s', default='VOC')
parser.add_argument(
'--iou_threshold', type=float,
help='IOU threshold for PascalVOC mAP, default=%(default)s', default=0.5)
parser.add_argument(
'--conf_threshold', type=float,
help='confidence threshold for filtering box in postprocess, default=%(default)s', default=0.001)
parser.add_argument(
'--model_image_size', type=str,
help='model image input size as <height>x<width>, default=%(default)s', default='416x416')
parser.add_argument(
'--elim_grid_sense', default=False, action="store_true",
help = "Eliminate grid sensitivity")
parser.add_argument(
'--save_result', default=False, action="store_true",
help='Save the detection result image in result/detection dir'
)
args = parser.parse_args()
# param parse
anchors = get_anchors(args.anchors_path)
class_names = get_classes(args.classes_path)
height, width = args.model_image_size.split('x')
model_image_size = (int(height), int(width))
assert (model_image_size[0]%32 == 0 and model_image_size[1]%32 == 0), 'model_image_size should be multiples of 32'
annotation_lines = get_dataset(args.annotation_file, shuffle=False)
model, model_format = load_eval_model(args.model_path)
start = time.time()
eval_AP(model, model_format, annotation_lines, anchors, class_names, model_image_size, args.eval_type, args.iou_threshold, args.conf_threshold, args.elim_grid_sense, args.save_result)
end = time.time()
print("Evaluation time cost: {:.6f}s".format(end - start))
if __name__ == '__main__':
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。