代码拉取完成,页面将自动刷新
from __future__ import division, print_function, absolute_import
import numpy as np
import selectivesearch
import os.path
from sklearn import svm
from sklearn.externals import joblib
import preprocessing_RCNN as prep
import os
import tools
import cv2
import config
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.normalization import local_response_normalization
from tflearn.layers.estimator import regression
def image_proposal(img_path):
img = cv2.imread(img_path)
img_lbl, regions = selectivesearch.selective_search(
img, scale=500, sigma=0.9, min_size=10)
candidates = set()
images = []
vertices = []
for r in regions:
# excluding same rectangle (with different segments)
if r['rect'] in candidates:
continue
# excluding small regions
if r['size'] < 220:
continue
if (r['rect'][2] * r['rect'][3]) < 500:
continue
# resize to 227 * 227 for input
proposal_img, proposal_vertice = prep.clip_pic(img, r['rect'])
# Delete Empty array
if len(proposal_img) == 0:
continue
# Ignore things contain 0 or not C contiguous array
x, y, w, h = r['rect']
if w == 0 or h == 0:
continue
# Check if any 0-dimension exist
[a, b, c] = np.shape(proposal_img)
if a == 0 or b == 0 or c == 0:
continue
resized_proposal_img = prep.resize_image(proposal_img, config.IMAGE_SIZE, config.IMAGE_SIZE)
candidates.add(r['rect'])
img_float = np.asarray(resized_proposal_img, dtype="float32")
images.append(img_float)
vertices.append(r['rect'])
return images, vertices
# Load training images
def generate_single_svm_train(train_file):
save_path = train_file.rsplit('.', 1)[0].strip()
if len(os.listdir(save_path)) == 0:
print("reading %s's svm dataset" % train_file.split('\\')[-1])
prep.load_train_proposals(train_file, 2, save_path, threshold=0.3, is_svm=True, save=True)
print("restoring svm dataset")
images, labels = prep.load_from_npy(save_path)
return images, labels
# Use a already trained alexnet with the last layer redesigned
def create_alexnet():
# Building 'AlexNet'
network = input_data(shape=[None, config.IMAGE_SIZE, config.IMAGE_SIZE, 3])
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=0.001)
return network
# Construct cascade svms
def train_svms(train_file_folder, model):
files = os.listdir(train_file_folder)
svms = []
for train_file in files:
if train_file.split('.')[-1] == 'txt':
X, Y = generate_single_svm_train(os.path.join(train_file_folder, train_file))
train_features = []
for ind, i in enumerate(X):
# extract features
feats = model.predict([i])
train_features.append(feats[0])
tools.view_bar("extract features of %s" % train_file, ind + 1, len(X))
print(' ')
print("feature dimension")
print(np.shape(train_features))
# SVM training
clf = svm.LinearSVC()
print("fit svm")
clf.fit(train_features, Y)
svms.append(clf)
joblib.dump(clf, os.path.join(train_file_folder, str(train_file.split('.')[0]) + '_svm.pkl'))
return svms
if __name__ == '__main__':
train_file_folder = config.TRAIN_SVM
img_path = './17flowers/jpg/7/image_0591.jpg' # or './17flowers/jpg/16/****.jpg'
imgs, verts = image_proposal(img_path)
tools.show_rect(img_path, verts)
net = create_alexnet()
model = tflearn.DNN(net)
model.load(config.FINE_TUNE_MODEL_PATH)
svms = []
for file in os.listdir(train_file_folder):
if file.split('_')[-1] == 'svm.pkl':
svms.append(joblib.load(os.path.join(train_file_folder, file)))
if len(svms) == 0:
svms = train_svms(train_file_folder, model)
print("Done fitting svms")
features = model.predict(imgs)
print("predict image:")
print(np.shape(features))
results = []
results_label = []
count = 0
for f in features:
for svm in svms:
pred = svm.predict([f.tolist()])
# not background
if pred[0] != 0:
results.append(verts[count])
results_label.append(pred[0])
count += 1
print("result:")
print(results)
print("result label:")
print(results_label)
tools.show_rect(img_path, results)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。