加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
bayes.py 5.20 KB
一键复制 编辑 原始数据 按行查看 历史
Da.Liu 提交于 2018-05-23 17:15 . update
from numpy import *
import numpy as np
def loadDataSet():
postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0, 1, 0, 1, 0, 1] # 1 is abusive, 0 not
return postingList, classVec
def createVocabList(dataSet):
vocabSet = set([]) # create empty set
for document in dataSet:
vocabSet = vocabSet | set(document) # union of the two sets
return list(vocabSet)
def setOfWords2Vec(vocabList, inputSet):
returnVec = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else:
print("the word: %s is not in my Vocabulary!" % word)
return returnVec
def trainNB0(trainMatrix,trainCategrory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategrory)/float(numTrainDocs)
p0Num = ones(numWords);p1Num = ones(numWords)
p0Denom = 2.0; p1Denom = 2.0
for i in range(numTrainDocs):
if trainCategrory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom +=sum(trainMatrix[i])
p1Vect = log(p1Num/p1Denom)
p0Vect = log(p0Num/p0Denom)
return p0Vect,p1Vect,pAbusive
def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1):
p1 = sum(vec2Classify*p1Vec)+log(pClass1)
p0 = sum(vec2Classify*p0Vec)+log(1.0-pClass1)
if p1>p0:
return 1
else:
return 0
def testingNB():
listOPosts, listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat = []
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses))
testEntry = ['love', 'my', 'dalmation']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
testEntry = ['stupid', 'cute']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
def bagOfWords2VecMN(vocabList,inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] +=1
return returnVec
def textPasrse(bigString):
import re
listOfTokens = re.split(r'\W*',bigString)
print("\n------------**************----------------\n")
print([tok.lower() for tok in listOfTokens if len(tok) >2])
return [tok.lower() for tok in listOfTokens if len(tok) >2]
def spamTest():
docList = [];classList = [];fullText = []
for i in range(1,26):
fr_spam = open('email/spam/%d.txt' % i,encoding="ISO-8859-1").read()
#print(fr_spam)
wordList = textPasrse(fr_spam)
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
fr_ham = open('email/ham/%d.txt' % i,encoding="ISO-8859-1").read()
#print(fr_ham)
wordList = textPasrse(fr_ham)
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)
trainingSet = list(range(50));testSet=[]
for i in range(10):
randIndex = int(random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat = [];trainingClasses = []
for docIndex in trainingSet:
trainMat.append(setOfWords2Vec(vocabList,docList[docIndex]))
trainingClasses.append(classList[docIndex])
p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainingClasses))
errorCount = 0
for docIndex in testSet: # classify the remaining items
wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
if classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
errorCount += 1
print("classification error", docList[docIndex])
print ('the error rate is: ', float(errorCount) / len(testSet))
# return vocabList,fullText
if __name__ == "__main__":
import bayes
listOPosts, listClasses = bayes.loadDataSet()
print(listOPosts)
print(listClasses)
myVocabList = bayes.createVocabList(listOPosts)
print("\nmyVocabList:\n",myVocabList)
print("\nlistOPosts[0]:",listOPosts[0],"\n",bayes.setOfWords2Vec(myVocabList,listOPosts[0]),"\n")
print()
print("\nlistOPosts[3]:",listOPosts[3],"\n",bayes.setOfWords2Vec(myVocabList,listOPosts[3]))
print("\n---***********-----Train------***********--\n")
trainMat = []
for postinDoc in listOPosts:
trainMat.append(bayes.setOfWords2Vec(myVocabList,postinDoc))
import os
p0V,p1V,pAb = bayes.trainNB0(trainMat,listClasses)
print("pAb: ",pAb,"\np0V:\n",p0V,"\np1V:\n",p1V)
bayes.testingNB()
bayes.spamTest()
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化