代码拉取完成,页面将自动刷新
同步操作将从 wanghairui-harry/DESOM 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
"""
Implementation of the Kerasom model (standard SOM in Keras)
Main file
@author Florent Forest
@version 2.0
"""
# Utilities
import os
import csv
import argparse
from time import time
import matplotlib.pyplot as plt
# Tensorflow/Keras
import tensorflow as tf
from keras.models import Model
from keras.layers import Input
from keras.utils.vis_utils import plot_model
# Dataset helper function
from datasets import load_data
# Kerasom components
from SOM import SOMLayer
from metrics import *
def som_loss(weights, distances):
"""
Calculate SOM reconstruction loss
# Arguments
weights: weights for the weighted sum, Tensor with shape `(n_samples, n_prototypes)`
distances: pairwise squared euclidean distances between inputs and prototype vectors, Tensor with shape `(n_samples, n_prototypes)`
# Return
SOM reconstruction loss
"""
return tf.reduce_mean(tf.reduce_sum(weights*distances, axis=1))
def kmeans_loss(y_pred, distances):
"""
Calculate k-means reconstruction loss
# Arguments
y_pred: cluster assignments, numpy.array with shape `(n_samples,)`
distances: pairwise squared euclidean distances between inputs and prototype vectors, numpy.array with shape `(n_samples, n_prototypes)`
# Return
k-means reconstruction loss
"""
return np.mean([distances[i, y_pred[i]] for i in range(len(y_pred))])
class Kerasom:
"""
Kerasom model (standard SOM in Keras)
# Example
```
kerasom = Kerasom(input_dim=784, map_size=(10,10))
```
# Arguments
input_dim: input vector dimension
map_size: tuple representing the size of the rectangular map. Number of prototypes is map_size[0]*map_size[1]
"""
def __init__(self, input_dim, map_size):
self.input_dim = input_dim
self.map_size = map_size
self.n_prototypes = map_size[0]*map_size[1]
self.input = None
self.model = None
def initialize(self):
"""
Create and compile SOM model
"""
self.input = Input(shape=(self.input_dim,), name='input')
som_layer = SOMLayer(self.map_size, name='SOM')(self.input)
self.model = Model(inputs=self.input, outputs=som_layer)
@property
def prototypes(self):
"""
Returns SOM code vectors
"""
return self.model.get_layer(name='SOM').get_weights()[0]
def compile(self, optimizer):
"""
Compile Kerasom model
# Arguments
optimizer: optimization algorithm
"""
self.model.compile(loss=som_loss, optimizer=optimizer)
def load_weights(self, weights_path):
"""
Load pre-trained weights of Kerasom model
"""
self.model.load_weights(weights_path)
def init_som_weights(self, X):
"""
Initialize with a sample w/o remplacement of encoded data points.
"""
sample = X[np.random.choice(X.shape[0], size=self.n_prototypes, replace=False)]
self.model.get_layer(name='SOM').set_weights([sample])
def predict(self, x):
"""
Predict best-matching unit using the output of SOM layer
# Arguments
x: data point
# Return
index of the best-matching unit
"""
d = self.model.predict(x, verbose=0)
return d.argmin(axis=1)
def map_dist(self, y_pred):
"""
Calculate pairwise Manhattan distances between cluster assignments and map prototypes (rectangular grid topology)
# Arguments
y_pred: cluster assignments, numpy.array with shape `(n_samples,)`
# Return
pairwise distance matrix (map_dist[i,k] is the distance on the map between assigned cell of data point i and cell k)
"""
labels = np.arange(self.n_prototypes)
tmp = np.expand_dims(y_pred, axis=1)
d_row = np.abs(tmp-labels)//self.map_size[1]
d_col = np.abs(tmp%self.map_size[1]-labels%self.map_size[1])
return d_row + d_col
@staticmethod
def neighborhood_function(d, T, neighborhood='gaussian'):
"""
SOM neighborhood function (gaussian neighborhood)
# Arguments
d: distance on the map
T: temperature parameter
"""
if neighborhood == 'gaussian':
return np.exp(-(d**2)/(T**2))
elif neighborhood == 'window':
return (d <= T).astype(np.float32)
def fit(self, X_train, y_train=None,
X_val=None, y_val=None,
iterations=10000,
som_iterations=10000,
eval_interval=10,
save_epochs=5,
batch_size=256,
Tmax=10,
Tmin=0.1,
decay='exponential',
save_dir='results/tmp'):
"""
Training procedure
# Arguments
X_train: training set
y_train: (optional) training labels
X_val: (optional) validation set
y_val: (optional) validation labels
iterations: number of training iterations
som_iterations: number of iterations where SOM neighborhood is decreased
eval_interval: evaluate metrics on training/validation batch every eval_interval iterations
save_epochs: save model weights every save_epochs epochs
batch_size: training batch size
Tmax: initial temperature parameter
Tmin: final temperature parameter
decay: type of temperature decay ('exponential' or 'linear')
save_dir: path to existing directory where weights and logs are saved
"""
save_interval = X_train.shape[0] // batch_size * save_epochs # save every save_epochs epochs
print('Save interval:', save_interval)
# Logging file
logfile = open(save_dir + '/kerasom_log.csv', 'w')
fieldnames = ['iter', 'T', 'Lsom', 'Lkm', 'Ltop', 'quantization_err', 'topographic_err']
if X_val is not None:
fieldnames += ['Lsom_val', 'Lkm_val', 'Ltop_val', 'quantization_err_val', 'topographic_err_val']
if y_train is not None:
fieldnames += ['acc', 'pur', 'nmi', 'ari']
if y_val is not None:
fieldnames += ['acc_val', 'pur_val', 'nmi_val', 'ari_val']
logwriter = csv.DictWriter(logfile, fieldnames)
logwriter.writeheader()
# Set and compute some initial values
index = 0
if X_val is not None:
index_val = 0
T = Tmax
for ite in range(iterations):
# Get training and validation batches
if (index + 1) * batch_size > X_train.shape[0]:
X_batch = X_train[index * batch_size::]
if y_train is not None:
y_batch = y_train[index * batch_size::]
index = 0
else:
X_batch = X_train[index * batch_size:(index + 1) * batch_size]
if y_train is not None:
y_batch = y_train[index * batch_size:(index + 1) * batch_size]
index += 1
if X_val is not None:
if (index_val + 1) * batch_size > X_val.shape[0]:
X_val_batch = X_val[index_val * batch_size::]
if y_val is not None:
y_val_batch = y_val[index_val * batch_size::]
index_val = 0
else:
X_val_batch = X_val[index_val * batch_size:(index_val + 1) * batch_size]
if y_val is not None:
y_val_batch = y_val[index_val * batch_size:(index_val + 1) * batch_size]
index_val += 1
# Compute cluster assignments for batches
d = self.model.predict(X_batch)
y_pred = d.argmin(axis=1)
if X_val is not None:
d_val = self.model.predict(X_val_batch)
y_val_pred = d_val.argmin(axis=1)
# Update temperature parameter
if ite < som_iterations:
if decay == 'exponential':
T = Tmax*(Tmin/Tmax)**(ite/(som_iterations-1))
elif decay == 'linear':
T = Tmax - (Tmax-Tmin)*(ite/(som_iterations-1))
# Compute topographic weights batches
w_batch = self.neighborhood_function(self.map_dist(y_pred), T, neighborhood='gaussian')
if X_val is not None:
w_val_batch = self.neighborhood_function(self.map_dist(y_val_pred), T, neighborhood='gaussian')
# Train on batch
loss = self.model.train_on_batch(X_batch, w_batch)
if ite % eval_interval == 0:
# Initialize log dictionary
logdict = dict(iter=ite, T=T)
# Evaluate losses and metrics
print('iteration {} - T={}'.format(ite, T))
logdict['Lsom'] = loss
logdict['Lkm'] = kmeans_loss(y_pred, d)
logdict['Ltop'] = loss - logdict['Lkm']
logdict['quantization_err'] = quantization_error(d)
logdict['topographic_err'] = topographic_error(d, self.map_size)
print('[Train] - Lsom={:f} (Lkm={:f}/Ltop={:f})'.format(logdict['Lsom'], logdict['Lkm'], logdict['Ltop']))
print('[Train] - Quantization err={:f} / Topographic err={:f}'.format(logdict['quantization_err'], logdict['topographic_err']))
if X_val is not None:
val_loss = self.model.test_on_batch(X_val_batch, [X_val_batch, w_val_batch])
logdict['Lsom_val'] = val_loss
logdict['Lkm_val'] = kmeans_loss(y_val_pred, d_val)
logdict['Ltop_val'] = val_loss - logdict['Lkm_val']
logdict['quantization_err_val'] = quantization_error(d_val)
logdict['topographic_err_val'] = topographic_error(d_val, self.map_size)
print('[Val] - Lsom={:f} (Lkm={:f}/Ltop={:f})'.format(logdict['Lsom_val'], logdict['Lkm_val'], logdict['Ltop_val']))
print('[Val] - Quantization err={:f} / Topographic err={:f}'.format(logdict['quantization_err_val'], logdict['topographic_err_val']))
# Evaluate the clustering performance using labels
if y_train is not None:
logdict['acc'] = cluster_acc(y_batch, y_pred)
logdict['pur'] = cluster_purity(y_batch, y_pred)
logdict['nmi'] = metrics.normalized_mutual_info_score(y_batch, y_pred)
logdict['ari'] = metrics.adjusted_rand_score(y_batch, y_pred)
print('[Train] - Acc={:f}, Pur={:f}, NMI={:f}, ARI={:f}'.format(logdict['acc'], logdict['pur'], logdict['nmi'], logdict['ari']))
if y_val is not None:
logdict['acc_val'] = cluster_acc(y_val_batch, y_val_pred)
logdict['pur_val'] = cluster_purity(y_val_batch, y_val_pred)
logdict['nmi_val'] = metrics.normalized_mutual_info_score(y_val_batch, y_val_pred)
logdict['ari_val'] = metrics.adjusted_rand_score(y_val_batch, y_val_pred)
print('[Val] - Acc={:f}, Pur={:f}, NMI={:f}, ARI={:f}'.format(logdict['acc_val'], logdict['pur_val'], logdict['nmi_val'], logdict['ari_val']))
logwriter.writerow(logdict)
# Save intermediate model
if ite % save_interval == 0:
self.model.save_weights(save_dir + '/kerasom_model_' + str(ite) + '.h5')
print('Saved model to:', save_dir + '/kerasom_model_' + str(ite) + '.h5')
# Save the final model
logfile.close()
print('saving model to:', save_dir + '/kerasom_model_final.h5')
self.model.save_weights(save_dir + '/kerasom_model_final.h5')
if __name__ == "__main__":
# Parsing arguments and setting hyper-parameters
parser = argparse.ArgumentParser(description='train', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset', default='mnist', choices=['mnist', 'fmnist', 'usps', 'reuters10k'])
parser.add_argument('--ae_weights', default=None, help='pre-trained autoencoder weights')
parser.add_argument('--map_size', nargs='+', default=[10,10], type=int)
parser.add_argument('--gamma', default=1.0, type=float, help='coefficient of self-organizing map loss')
parser.add_argument('--iterations', default=10000, type=int)
parser.add_argument('--som_iterations', default=10000, type=int)
parser.add_argument('--eval_interval', default=100, type=int)
parser.add_argument('--save_epochs', default=5, type=int)
parser.add_argument('--batch_size', default=256, type=int)
parser.add_argument('--Tmax', default=10.0, type=float)
parser.add_argument('--Tmin', default=0.1, type=float)
parser.add_argument('--decay', default='exponential', choices=['exponential', 'linear'])
parser.add_argument('--save_dir', default='results/tmp')
args = parser.parse_args()
print(args)
# Create save directory if not exists
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
# Load data
(X_train, y_train), (X_val, y_val) = load_data(args.dataset)
# Set default values
init = 'glorot_uniform'
# Instantiate model
kerasom = Kerasom(input_dim=X_train.shape[-1], map_size=args.map_size)
# Initialize model
optimizer = 'adam'
kerasom.initialize()
plot_model(kerasom.model, to_file='kerasom_model.png', show_shapes=True)
kerasom.model.summary()
kerasom.compile(optimizer=optimizer)
# Fit model
t0 = time()
kerasom.fit(X_train, y_train, X_val, y_val, args.iterations, args.som_iterations, args.eval_interval,
args.save_epochs, args.batch_size, args.Tmax, args.Tmin, args.decay, args.save_dir)
print('Training time: ', (time() - t0))
# Generate Kerasom map prototype visualization
if args.dataset in ['mnist', 'fmnist', 'usps']:
img_size = int(np.sqrt(X_train.shape[1]))
fig, ax = plt.subplots(args.map_size[0], args.map_size[1], figsize=(10, 10))
for k in range(args.map_size[0] * args.map_size[1]):
ax[k // args.map_size[1]][k % args.map_size[1]].imshow(kerasom.prototypes[k].reshape(img_size, img_size), cmap='gray')
ax[k // args.map_size[1]][k % args.map_size[1]].axis('off')
plt.subplots_adjust(hspace=0.05, wspace=0.05)
plt.savefig('kerasom_map_{}.png'.format(args.dataset), bbox_inches='tight')
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。