加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
main.cpp 11.26 KB
一键复制 编辑 原始数据 按行查看 历史
shaoshengsong 提交于 2019-05-09 14:30 . Add files via upload
// This code is written at BigVision LLC. It is based on the OpenCV project. It is subject to the license terms in the LICENSE file found in this distribution and at http://opencv.org/license.html
// Usage example: ./object_detection_yolo.out --video=run.mp4
// ./object_detection_yolo.out --image=bird.jpg
#include <fstream>
#include <sstream>
#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/dnn/dnn.hpp>
#include <opencv2/dnn.hpp>
#include <opencv2/core/utility.hpp>
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include <opencv2/core/types_c.h>
#include <opencv2/bgsegm.hpp>
#include "./DeepAppearanceDescriptor/FeatureTensor.h"
#include "KalmanFilter/tracker.h"
const char* keys =
"{help h usage ? | | Usage examples: \n\t\t./object_detection_yolo.out --image=dog.jpg \n\t\t./object_detection_yolo.out --video=run_sm.mp4}"
"{image i |<none>| input image }"
"{video v |<none>| input video }"
;
// yolo parameter
// Initialize the parameters
const float confThreshold = 0.5; // Confidence threshold
const float nmsThreshold = 0.4; // Non-maximum suppression threshold
const int inpWidth = 416; // Width of network's input image
const int inpHeight = 416; // Height of network's input image
std::vector< std::string> classes;
//Deep SORT parameter
const int nn_budget=100;
const float max_cosine_distance=0.2;
// Remove the bounding boxes with low confidence using non-maxima suppression
void postprocess(cv::Mat& frame, const std::vector<cv::Mat>& out, DETECTIONS& d);
// Draw the predicted bounding box
void drawPred(int classId, float conf, int left, int top, int right, int bottom, cv::Mat& frame);
// Get the names of the output layers
std::vector<cv::String> getOutputsNames(const cv::dnn::Net& net);
void get_detections(DETECTBOX box,float confidence,DETECTIONS& d);
int main(int argc, char** argv)
{
cv::CommandLineParser parser(argc, argv, keys);
parser.about("Use this script to run object detection using YOLO3 in OpenCV.");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
//deep SORT
tracker mytracker(max_cosine_distance, nn_budget);
//yolo
// Load names of classes
std::string classesFile = "coco.names";
std::ifstream ifs(classesFile.c_str());
std::string line;
while (getline(ifs, line)) classes.push_back(line);
// Give the configuration and weight files for the model
cv::String modelConfiguration = "yolov3.cfg";
cv::String modelWeights = "yolov3.weights";
// Load the network
cv::dnn::Net net = cv::dnn::readNetFromDarknet(modelConfiguration, modelWeights);
net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);
net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
// Open a video file or an image file or a camera stream.
std::string str, outputFile;
cv::VideoCapture cap;
cv::VideoWriter video;
cv::Mat frame, blob;
try {
outputFile = "yolo_out_cpp.avi";
if (parser.has("image"))
{
// Open the image file
str = parser.get<cv::String>("image");
std::ifstream ifile(str);
if (!ifile) throw("error");
cap.open(str);
str.replace(str.end()-4, str.end(), "_yolo_out_cpp.jpg");
outputFile = str;
}
else if (parser.has("video"))
{
// Open the video file
str = parser.get<cv::String>("video");
std::ifstream ifile(str);
if (!ifile) throw("error");
cap.open(str);
str.replace(str.end()-4, str.end(), "_yolo_out_cpp.avi");
outputFile = str;
}
else
{
cap.open(0);
}
// Open the webcaom
// else cap.open(parser.get<int>("device"));
}
catch(...) {
std::cout << "Could not open the input image/video stream" << std::endl;
return 0;
}
// Get the video writer initialized to save the output video
if (!parser.has("image"))
{
video.open(outputFile, cv::VideoWriter::fourcc('M','J','P','G'), 28.0,
cv::Size(static_cast<int>(cap.get(cv::CAP_PROP_FRAME_WIDTH)),static_cast<int>(cap.get(cv::CAP_PROP_FRAME_HEIGHT))));
}
// Create a window
static const std::string kWinName = "Multiple Object Tracking";
namedWindow(kWinName, cv::WINDOW_NORMAL);
// Process frames.
while (cv::waitKey(1) < 0)
{
// get frame from the video
cap >> frame;
// Stop the program if reached end of video
if (frame.empty())
{
std::cout << "Done processing !!!" << std::endl;
std::cout << "Output file is stored as " << outputFile << std::endl;
cv::waitKey(3000);
break;
}
// Create a 4D blob from a frame.
cv::dnn::blobFromImage(frame, blob, 1/255.0, cvSize(inpWidth, inpHeight), cv::Scalar(0,0,0), true, false);
//Sets the input to the network
net.setInput(blob);
// Runs the forward pass to get output of the output layers
std::vector<cv::Mat> outs;
net.forward(outs, getOutputsNames(net));
// Remove the bounding boxes with low confidence
DETECTIONS detections;
postprocess(frame, outs,detections);
std::cout<<"Detections size:"<<detections.size()<<std::endl;
if(FeatureTensor::getInstance()->getRectsFeature(frame, detections))
{
std::cout << "Tensorflow get feature succeed!"<<std::endl;
mytracker.predict();
mytracker.update(detections);
std::vector<RESULT_DATA> result;
for(Track& track : mytracker.tracks) {
if(!track.is_confirmed() || track.time_since_update > 1) continue;
result.push_back(std::make_pair(track.track_id, track.to_tlwh()));
}
for(unsigned int k = 0; k < detections.size(); k++)
{
DETECTBOX tmpbox = detections[k].tlwh;
cv::Rect rect(tmpbox(0), tmpbox(1), tmpbox(2), tmpbox(3));
cv::rectangle(frame, rect, cv::Scalar(0,0,255), 4);
// cvScalar的储存顺序是B-G-R,CV_RGB的储存顺序是R-G-B
for(unsigned int k = 0; k < result.size(); k++)
{
DETECTBOX tmp = result[k].second;
cv::Rect rect = cv::Rect(tmp(0), tmp(1), tmp(2), tmp(3));
rectangle(frame, rect, cv::Scalar(255, 255, 0), 2);
std::string label = cv::format("%d", result[k].first);
cv::putText(frame, label, cv::Point(rect.x, rect.y), cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(255, 255, 0), 2);
}
}
}
else
{
std::cout << "Tensorflow get feature failed!"<<std::endl;;
}
// Put efficiency information. The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes)
std::vector<double> layersTimes;
double freq = cv::getTickFrequency() / 1000;
double t = net.getPerfProfile(layersTimes) / freq;
std::string label = cv::format("Inference time for a frame : %.2f ms", t);
putText(frame, label, cv::Point(0, 15), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 255));
// Write the frame with the detection boxes
cv::Mat detectedFrame;
frame.convertTo(detectedFrame, CV_8U);
if (parser.has("image")) imwrite(outputFile, detectedFrame);
else video.write(detectedFrame);
imshow(kWinName, frame);
}
cap.release();
if (!parser.has("image")) video.release();
return 0;
}
// Remove the bounding boxes with low confidence using non-maxima suppression
void postprocess(cv::Mat& frame, const std::vector<cv::Mat>& outs,DETECTIONS& d)
{
std::vector<int> classIds;
std::vector<float> confidences;
std::vector<cv::Rect> boxes;
for (size_t i = 0; i < outs.size(); ++i)
{
// Scan through all the bounding boxes output from the network and keep only the
// ones with high confidence scores. Assign the box's class label as the class
// with the highest score for the box.
float* data = (float*)outs[i].data;
for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols)
{
cv::Mat scores = outs[i].row(j).colRange(5, outs[i].cols);
cv::Point classIdPoint;
double confidence;
// Get the value and location of the maximum score
cv::minMaxLoc(scores, 0, &confidence, 0, &classIdPoint);
if ( static_cast<float>(confidence) >(confThreshold))
{
int centerX = (int)(data[0] * frame.cols);
int centerY = (int)(data[1] * frame.rows);
int width = (int)(data[2] * frame.cols);
int height = (int)(data[3] * frame.rows);
int left = centerX - width / 2;
int top = centerY - height / 2;
classIds.push_back(classIdPoint.x);
confidences.push_back((float)confidence);
boxes.push_back(cv::Rect(left, top, width, height));
}
}
}
// Perform non maximum suppression to eliminate redundant overlapping boxes with
// lower confidences
std::vector<int> indices;
cv::dnn::NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices);
for (size_t i = 0; i < indices.size(); ++i)
{
size_t idx =static_cast<size_t>(indices[i]);
cv::Rect box = boxes[idx];
//目标检测 代码的可视化
//drawPred(classIds[idx], confidences[idx], box.x, box.y,box.x + box.width, box.y + box.height, frame);
get_detections(DETECTBOX(box.x, box.y,box.width, box.height),confidences[idx],d);
}
}
// Draw the predicted bounding box
void drawPred(int classId, float conf, int left, int top, int right, int bottom, cv::Mat& frame)
{
//Draw a rectangle displaying the bounding box
cv::rectangle(frame, cv::Point(left, top), cv::Point(right, bottom), cv::Scalar(255, 178, 50), 3);
//Get the label for the class name and its confidence
std::string label = cv::format("%.2f", conf);
if (!classes.empty())
{
CV_Assert(classId < (int)classes.size());
label = classes[classId] + ":" + label;
}
//Display the label at the top of the bounding box
int baseLine;
cv::Size labelSize = getTextSize(label, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
top = cv::max(top, labelSize.height);
cv::rectangle(frame, cv::Point(left, top - round(1.5*labelSize.height)), cv::Point(left + round(1.5*labelSize.width), top + baseLine), cv::Scalar(255, 255, 255), cv::FILLED);
cv::putText(frame, label, cv::Point(left, top), cv::FONT_HERSHEY_SIMPLEX, 0.75, cv::Scalar(0,0,0),1);
}
// Get the names of the output layers
std::vector<cv::String> getOutputsNames(const cv::dnn::Net& net)
{
static std::vector<cv::String> names;
if (names.empty())
{
//Get the indices of the output layers, i.e. the layers with unconnected outputs
std::vector<int> outLayers = net.getUnconnectedOutLayers();
//get the names of all the layers in the network
std::vector<cv::String> layersNames = net.getLayerNames();
// Get the names of the output layers in names
names.resize(outLayers.size());
for (size_t i = 0; i < outLayers.size(); ++i)
names[i] = layersNames[outLayers[i] - 1];
}
return names;
}
void get_detections(DETECTBOX box,float confidence,DETECTIONS& d)
{
DETECTION_ROW tmpRow;
tmpRow.tlwh = box;//DETECTBOX(x, y, w, h);
tmpRow.confidence = confidence;
d.push_back(tmpRow);
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化