代码拉取完成,页面将自动刷新
# Copyright (c) 2023, Tri Dao, Albert Gu.
import math
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from einops import rearrange, repeat
try:
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
except ImportError:
causal_conv1d_fn, causal_conv1d_update = None
try:
from mamba_ssm.ops.selective_scan_interface import selective_scan_fn, mamba_inner_fn ,bimamba_inner_fn, mamba_inner_fn_no_out_proj
except ImportError:
selective_scan_fn, mamba_inner_fn, bimamba_inner_fn, mamba_inner_fn_no_out_proj = None, None, None, None
try:
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
except ImportError:
selective_state_update = None
try:
from mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn
except ImportError:
RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None
class Mamba(nn.Module):
def __init__(
self,
d_model,
d_state=16,
d_conv=4,
expand=2,
dt_rank="auto",
dt_min=0.001,
dt_max=0.1,
dt_init="random",
dt_scale=1.0,
dt_init_floor=1e-4,
conv_bias=True,
bias=False,
use_fast_path=True, # Fused kernel options
layer_idx=None,
device=None,
dtype=None,
bimamba_type="v2",
if_devide_out=False,
init_layer_scale=None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.d_model = d_model
self.d_state = d_state
self.d_conv = d_conv
self.expand = expand
self.d_inner = int(self.expand * self.d_model)
self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank
self.use_fast_path = use_fast_path
self.layer_idx = layer_idx
self.bimamba_type = bimamba_type
self.if_devide_out = if_devide_out
self.init_layer_scale = init_layer_scale
if init_layer_scale is not None:
self.gamma = nn.Parameter(init_layer_scale * torch.ones((d_model)), requires_grad=True)
self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs)
self.conv1d = nn.Conv1d(
in_channels=self.d_inner,
out_channels=self.d_inner,
bias=conv_bias,
kernel_size=d_conv,
groups=self.d_inner,
padding=d_conv - 1,
**factory_kwargs,
)
self.activation = "silu"
self.act = nn.SiLU()
self.x_proj = nn.Linear(
self.d_inner, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs
)
self.dt_proj = nn.Linear(self.dt_rank, self.d_inner, bias=True, **factory_kwargs)
# Initialize special dt projection to preserve variance at initialization
dt_init_std = self.dt_rank**-0.5 * dt_scale
if dt_init == "constant":
nn.init.constant_(self.dt_proj.weight, dt_init_std)
elif dt_init == "random":
nn.init.uniform_(self.dt_proj.weight, -dt_init_std, dt_init_std)
else:
raise NotImplementedError
# Initialize dt bias so that F.softplus(dt_bias) is between dt_min and dt_max
dt = torch.exp(
torch.rand(self.d_inner, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
+ math.log(dt_min)
).clamp(min=dt_init_floor)
# Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
inv_dt = dt + torch.log(-torch.expm1(-dt))
with torch.no_grad():
self.dt_proj.bias.copy_(inv_dt)
# Our initialization would set all Linear.bias to zero, need to mark this one as _no_reinit
self.dt_proj.bias._no_reinit = True
# S4D real initialization
A = repeat(
torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device),
"n -> d n",
d=self.d_inner,
).contiguous()
A_log = torch.log(A) # Keep A_log in fp32
self.A_log = nn.Parameter(A_log)
self.A_log._no_weight_decay = True
# D "skip" parameter
self.D = nn.Parameter(torch.ones(self.d_inner, device=device)) # Keep in fp32
self.D._no_weight_decay = True
# bidirectional
if bimamba_type == "v1":
A_b = repeat(
torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device),
"n -> d n",
d=self.d_inner,
).contiguous()
A_b_log = torch.log(A_b) # Keep A_b_log in fp32
self.A_b_log = nn.Parameter(A_b_log)
self.A_b_log._no_weight_decay = True
elif bimamba_type == "v2" or bimamba_type=='v3' or bimamba_type=='m3':
A_b = repeat(
torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device),
"n -> d n",
d=self.d_inner,
).contiguous()
A_b_log = torch.log(A_b) # Keep A_b_log in fp32
self.A_b_log = nn.Parameter(A_b_log)
self.A_b_log._no_weight_decay = True
self.conv1d_b = nn.Conv1d(
in_channels=self.d_inner,
out_channels=self.d_inner,
bias=conv_bias,
kernel_size=d_conv,
groups=self.d_inner,
padding=d_conv - 1,
**factory_kwargs,
)
self.conv1d_c = nn.Conv1d(
in_channels=self.d_inner,
out_channels=self.d_inner,
bias=conv_bias,
kernel_size=d_conv,
groups=self.d_inner,
padding=d_conv - 1,
**factory_kwargs,
)
self.x_proj_b = nn.Linear(
self.d_inner, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs
)
self.x_proj_c = nn.Linear(
self.d_inner, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs
)
self.dt_proj_b = nn.Linear(self.dt_rank, self.d_inner, bias=True, **factory_kwargs)
self.dt_proj_c = nn.Linear(self.dt_rank, self.d_inner, bias=True, **factory_kwargs)
self.D_b = nn.Parameter(torch.ones(self.d_inner, device=device)) # Keep in fp32
self.D_b._no_weight_decay = True
self.D_c = nn.Parameter(torch.ones(self.d_inner, device=device)) # Keep in fp32
self.D_c._no_weight_decay = True
self.in_proj_extra1 = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs)
self.in_proj_extra2 = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs)
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
def forward(self, hidden_states, inference_params=None,extra_emb1=None,extra_emb2=None):
"""
hidden_states: (B, L, D)
Returns: same shape as hidden_states
"""
batch, seqlen, dim = hidden_states.shape
conv_state, ssm_state = None, None
if inference_params is not None:
conv_state, ssm_state = self._get_states_from_cache(inference_params, batch)
if inference_params.seqlen_offset > 0:
# The states are updated inplace
out, _, _ = self.step(hidden_states, conv_state, ssm_state)
return out
if extra_emb1 is None and extra_emb2 is None:
# We do matmul and transpose BLH -> HBL at the same time
xz = rearrange(
self.in_proj.weight @ rearrange(hidden_states, "b l d -> d (b l)"),
"d (b l) -> b d l",
l=seqlen,
)
if self.in_proj.bias is not None:
xz = xz + rearrange(self.in_proj.bias.to(dtype=xz.dtype), "d -> d 1")
elif extra_emb2 is None:
xz = rearrange(
self.in_proj.weight @ rearrange(hidden_states, "b l d -> d (b l)"),
"d (b l) -> b d l",
l=seqlen,
)
if self.in_proj.bias is not None:
xz = xz + rearrange(self.in_proj.bias.to(dtype=xz.dtype), "d -> d 1")
extra_emb1 = rearrange(
self.in_proj_extra1.weight @ rearrange(extra_emb1, "b l d -> d (b l)"),
"d (b l) -> b d l",
l=seqlen,
)
if self.in_proj_extra1.bias is not None:
extra_emb1 = extra_emb1 + rearrange(self.in_proj_extra1.bias.to(dtype=xz.dtype), "d -> d 1")
else:
xz = rearrange(
self.in_proj.weight @ rearrange(hidden_states, "b l d -> d (b l)"),
"d (b l) -> b d l",
l=seqlen,
)
if self.in_proj.bias is not None:
xz = xz + rearrange(self.in_proj.bias.to(dtype=xz.dtype), "d -> d 1")
extra_emb1 = rearrange(
self.in_proj_extra1.weight @ rearrange(extra_emb1, "b l d -> d (b l)"),
"d (b l) -> b d l",
l=seqlen,
)
extra_emb2 = rearrange(
self.in_proj_extra2.weight @ rearrange(extra_emb2, "b l d -> d (b l)"),
"d (b l) -> b d l",
l=seqlen,
)
if self.in_proj_extra1.bias is not None:
extra_emb1 = extra_emb1 + rearrange(self.in_proj_extra1.bias.to(dtype=xz.dtype), "d -> d 1")
if self.in_proj_extra2.bias is not None:
extra_emb2 = extra_emb2 + rearrange(self.in_proj_extra2.bias.to(dtype=xz.dtype), "d -> d 1")
A = -torch.exp(self.A_log.float()) # (d_inner, d_state)
# In the backward pass we write dx and dz next to each other to avoid torch.cat
if self.use_fast_path and inference_params is None: # Doesn't support outputting the states
if self.bimamba_type == "v1":
A_b = -torch.exp(self.A_b_log.float())
out = bimamba_inner_fn(
xz,
self.conv1d.weight,
self.conv1d.bias,
self.x_proj.weight,
self.dt_proj.weight,
self.out_proj.weight,
self.out_proj.bias,
A,
A_b,
None, # input-dependent B
None, # input-dependent C
self.D.float(),
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
)
elif self.bimamba_type == "v2":
A_b = -torch.exp(self.A_b_log.float())
out = mamba_inner_fn_no_out_proj(
xz,
self.conv1d.weight,
self.conv1d.bias,
self.x_proj.weight,
self.dt_proj.weight,
A,
None, # input-dependent B
None, # input-dependent C
self.D.float(),
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
)
out_b = mamba_inner_fn_no_out_proj(
xz.flip([-1]),
self.conv1d_b.weight,
self.conv1d_b.bias,
self.x_proj_b.weight,
self.dt_proj_b.weight,
A_b,
None,
None,
self.D_b.float(),
delta_bias=self.dt_proj_b.bias.float(),
delta_softplus=True,
)
# F.linear(rearrange(out_z, "b d l -> b l d"), out_proj_weight, out_proj_bias)
if not self.if_devide_out:
out = F.linear(rearrange(out + out_b.flip([-1]), "b d l -> b l d"), self.out_proj.weight, self.out_proj.bias)
else:
out = F.linear(rearrange(out + out_b.flip([-1]), "b d l -> b l d") / 2, self.out_proj.weight, self.out_proj.bias)
elif self.bimamba_type == "v3":
A_b = -torch.exp(self.A_b_log.float())
out = mamba_inner_fn_no_out_proj(
xz,
self.conv1d.weight,
self.conv1d.bias,
self.x_proj.weight,
self.dt_proj.weight,
A,
None, # input-dependent B
None, # input-dependent C
self.D.float(),
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
)
out_b = mamba_inner_fn_no_out_proj(
extra_emb1,
self.conv1d_b.weight,
self.conv1d_b.bias,
self.x_proj_b.weight,
self.dt_proj_b.weight,
A_b,
None,
None,
self.D_b.float(),
delta_bias=self.dt_proj_b.bias.float(),
delta_softplus=True,
)
# F.linear(rearrange(out_z, "b d l -> b l d"), out_proj_weight, out_proj_bias)
if not self.if_devide_out:
out = F.linear(rearrange(out + out_b, "b d l -> b l d"), self.out_proj.weight, self.out_proj.bias)
else:
out = F.linear(rearrange(out + out_b, "b d l -> b l d") / 2, self.out_proj.weight, self.out_proj.bias)
elif self.bimamba_type == "m3":
A_b = -torch.exp(self.A_b_log.float())
out = mamba_inner_fn_no_out_proj(
xz,
self.conv1d.weight,
self.conv1d.bias,
self.x_proj.weight,
self.dt_proj.weight,
A,
None, # input-dependent B
None, # input-dependent C
self.D.float(),
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
)
out_b = mamba_inner_fn_no_out_proj(
extra_emb1,
self.conv1d_b.weight,
self.conv1d_b.bias,
self.x_proj_b.weight,
self.dt_proj_b.weight,
A_b,
None,
None,
self.D_b.float(),
delta_bias=self.dt_proj_b.bias.float(),
delta_softplus=True,
)
out_c = mamba_inner_fn_no_out_proj(
extra_emb2,
self.conv1d_c.weight,
self.conv1d_c.bias,
self.x_proj_c.weight,
self.dt_proj_c.weight,
A_b,
None,
None,
self.D_c.float(),
delta_bias=self.dt_proj_c.bias.float(),
delta_softplus=True,
)
# F.linear(rearrange(out_z, "b d l -> b l d"), out_proj_weight, out_proj_bias)
if not self.if_devide_out:
out = F.linear(rearrange(out + out_b + out_c, "b d l -> b l d"), self.out_proj.weight, self.out_proj.bias)
else:
out = F.linear(rearrange(out + out_b + out_c, "b d l -> b l d") / 3, self.out_proj.weight, self.out_proj.bias)
else:
out = mamba_inner_fn(
xz,
self.conv1d.weight,
self.conv1d.bias,
self.x_proj.weight,
self.dt_proj.weight,
self.out_proj.weight,
self.out_proj.bias,
A,
None, # input-dependent B
None, # input-dependent C
self.D.float(),
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
)
else:
x, z = xz.chunk(2, dim=1)
# Compute short convolution
if conv_state is not None:
# If we just take x[:, :, -self.d_conv :], it will error if seqlen < self.d_conv
# Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise.
conv_state.copy_(F.pad(x, (self.d_conv - x.shape[-1], 0))) # Update state (B D W)
if causal_conv1d_fn is None:
x = self.act(self.conv1d(x)[..., :seqlen])
else:
assert self.activation in ["silu", "swish"]
x = causal_conv1d_fn(
x=x,
weight=rearrange(self.conv1d.weight, "d 1 w -> d w"),
bias=self.conv1d.bias,
activation=self.activation,
)
# We're careful here about the layout, to avoid extra transposes.
# We want dt to have d as the slowest moving dimension
# and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
x_dbl = self.x_proj(rearrange(x, "b d l -> (b l) d")) # (bl d)
dt, B, C = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1)
dt = self.dt_proj.weight @ dt.t()
dt = rearrange(dt, "d (b l) -> b d l", l=seqlen)
B = rearrange(B, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
C = rearrange(C, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
assert self.activation in ["silu", "swish"]
y = selective_scan_fn(
x,
dt,
A,
B,
C,
self.D.float(),
z=z,
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
return_last_state=ssm_state is not None,
)
if ssm_state is not None:
y, last_state = y
ssm_state.copy_(last_state)
y = rearrange(y, "b d l -> b l d")
out = self.out_proj(y)
if self.init_layer_scale is not None:
out = out * self.gamma
return out
def step(self, hidden_states, conv_state, ssm_state):
dtype = hidden_states.dtype
assert hidden_states.shape[1] == 1, "Only support decoding with 1 token at a time for now"
xz = self.in_proj(hidden_states.squeeze(1)) # (B 2D)
x, z = xz.chunk(2, dim=-1) # (B D)
# Conv step
if causal_conv1d_update is None:
conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) # Update state (B D W)
conv_state[:, :, -1] = x
x = torch.sum(conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1) # (B D)
if self.conv1d.bias is not None:
x = x + self.conv1d.bias
x = self.act(x).to(dtype=dtype)
else:
x = causal_conv1d_update(
x,
conv_state,
rearrange(self.conv1d.weight, "d 1 w -> d w"),
self.conv1d.bias,
self.activation,
)
x_db = self.x_proj(x) # (B dt_rank+2*d_state)
dt, B, C = torch.split(x_db, [self.dt_rank, self.d_state, self.d_state], dim=-1)
# Don't add dt_bias here
dt = F.linear(dt, self.dt_proj.weight) # (B d_inner)
A = -torch.exp(self.A_log.float()) # (d_inner, d_state)
# SSM step
if selective_state_update is None:
# Discretize A and B
dt = F.softplus(dt + self.dt_proj.bias.to(dtype=dt.dtype))
dA = torch.exp(torch.einsum("bd,dn->bdn", dt, A))
dB = torch.einsum("bd,bn->bdn", dt, B)
ssm_state.copy_(ssm_state * dA + rearrange(x, "b d -> b d 1") * dB)
y = torch.einsum("bdn,bn->bd", ssm_state.to(dtype), C)
y = y + self.D.to(dtype) * x
y = y * self.act(z) # (B D)
else:
y = selective_state_update(
ssm_state, x, dt, A, B, C, self.D, z=z, dt_bias=self.dt_proj.bias, dt_softplus=True
)
out = self.out_proj(y)
return out.unsqueeze(1), conv_state, ssm_state
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
device = self.out_proj.weight.device
conv_dtype = self.conv1d.weight.dtype if dtype is None else dtype
conv_state = torch.zeros(
batch_size, self.d_model * self.expand, self.d_conv, device=device, dtype=conv_dtype
)
ssm_dtype = self.dt_proj.weight.dtype if dtype is None else dtype
# ssm_dtype = torch.float32
ssm_state = torch.zeros(
batch_size, self.d_model * self.expand, self.d_state, device=device, dtype=ssm_dtype
)
return conv_state, ssm_state
def _get_states_from_cache(self, inference_params, batch_size, initialize_states=False):
assert self.layer_idx is not None
if self.layer_idx not in inference_params.key_value_memory_dict:
batch_shape = (batch_size,)
conv_state = torch.zeros(
batch_size,
self.d_model * self.expand,
self.d_conv,
device=self.conv1d.weight.device,
dtype=self.conv1d.weight.dtype,
)
ssm_state = torch.zeros(
batch_size,
self.d_model * self.expand,
self.d_state,
device=self.dt_proj.weight.device,
dtype=self.dt_proj.weight.dtype,
# dtype=torch.float32,
)
inference_params.key_value_memory_dict[self.layer_idx] = (conv_state, ssm_state)
else:
conv_state, ssm_state = inference_params.key_value_memory_dict[self.layer_idx]
# TODO: What if batch size changes between generation, and we reuse the same states?
if initialize_states:
conv_state.zero_()
ssm_state.zero_()
return conv_state, ssm_state
class Block(nn.Module):
def __init__(
self, dim, mixer_cls, norm_cls=nn.LayerNorm, fused_add_norm=False, residual_in_fp32=False
):
"""
Simple block wrapping a mixer class with LayerNorm/RMSNorm and residual connection"
This Block has a slightly different structure compared to a regular
prenorm Transformer block.
The standard block is: LN -> MHA/MLP -> Add.
[Ref: https://arxiv.org/abs/2002.04745]
Here we have: Add -> LN -> Mixer, returning both
the hidden_states (output of the mixer) and the residual.
This is purely for performance reasons, as we can fuse add and LayerNorm.
The residual needs to be provided (except for the very first block).
"""
super().__init__()
self.residual_in_fp32 = residual_in_fp32
self.fused_add_norm = fused_add_norm
self.mixer = mixer_cls(dim)
self.norm = norm_cls(dim)
if self.fused_add_norm:
assert RMSNorm is not None, "RMSNorm import fails"
assert isinstance(
self.norm, (nn.LayerNorm, RMSNorm)
), "Only LayerNorm and RMSNorm are supported for fused_add_norm"
def forward(
self, hidden_states: Tensor, residual: Optional[Tensor] = None, inference_params=None
):
r"""Pass the input through the encoder layer.
Args:
hidden_states: the sequence to the encoder layer (required).
residual: hidden_states = Mixer(LN(residual))
"""
if not self.fused_add_norm:
residual = (hidden_states + residual) if residual is not None else hidden_states
hidden_states = self.norm(residual.to(dtype=self.norm.weight.dtype))
if self.residual_in_fp32:
residual = residual.to(torch.float32)
else:
fused_add_norm_fn = rms_norm_fn if isinstance(self.norm, RMSNorm) else layer_norm_fn
hidden_states, residual = fused_add_norm_fn(
hidden_states,
self.norm.weight,
self.norm.bias,
residual=residual,
prenorm=True,
residual_in_fp32=self.residual_in_fp32,
eps=self.norm.eps,
)
hidden_states = self.mixer(hidden_states, inference_params=inference_params)
return hidden_states, residual
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
return self.mixer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
class DWMamba(nn.Module):
def __init__(
self,
d_model,
d_state=16,
d_conv=4,
expand=2,
dt_rank="auto",
dt_min=0.001,
dt_max=0.1,
dt_init="random",
dt_scale=1.0,
dt_init_floor=1e-4,
conv_bias=True,
bias=False,
use_fast_path=True, # Fused kernel options
layer_idx=None,
device=None,
dtype=None,
bimamba_type="v2",
if_devide_out=False,
init_layer_scale=None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.d_model = d_model
self.d_state = d_state
self.d_conv = d_conv
self.expand = expand
self.d_inner = int(self.expand * self.d_model)
self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank
self.use_fast_path = use_fast_path
self.layer_idx = layer_idx
self.bimamba_type = bimamba_type
self.if_devide_out = if_devide_out
self.init_layer_scale = init_layer_scale
if init_layer_scale is not None:
self.gamma = nn.Parameter(init_layer_scale * torch.ones((d_model)), requires_grad=True)
self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs)
self.conv1d = nn.Conv1d(
in_channels=self.d_inner,
out_channels=self.d_inner,
bias=conv_bias,
kernel_size=d_conv,
groups=self.d_inner,
padding=d_conv - 1,
**factory_kwargs,
)
self.activation = "silu"
self.act = nn.SiLU()
self.x_proj = nn.Linear(
self.d_inner, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs
)
self.dt_proj = nn.Linear(self.dt_rank, self.d_inner, bias=True, **factory_kwargs)
# Initialize special dt projection to preserve variance at initialization
dt_init_std = self.dt_rank**-0.5 * dt_scale
if dt_init == "constant":
nn.init.constant_(self.dt_proj.weight, dt_init_std)
elif dt_init == "random":
nn.init.uniform_(self.dt_proj.weight, -dt_init_std, dt_init_std)
else:
raise NotImplementedError
# Initialize dt bias so that F.softplus(dt_bias) is between dt_min and dt_max
dt = torch.exp(
torch.rand(self.d_inner, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
+ math.log(dt_min)
).clamp(min=dt_init_floor)
# Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
inv_dt = dt + torch.log(-torch.expm1(-dt))
with torch.no_grad():
self.dt_proj.bias.copy_(inv_dt)
# Our initialization would set all Linear.bias to zero, need to mark this one as _no_reinit
self.dt_proj.bias._no_reinit = True
# S4D real initialization
A = repeat(
torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device),
"n -> d n",
d=self.d_inner,
).contiguous()
A_log = torch.log(A) # Keep A_log in fp32
self.A_log = nn.Parameter(A_log)
self.A_log._no_weight_decay = True
# D "skip" parameter
self.D = nn.Parameter(torch.ones(self.d_inner, device=device)) # Keep in fp32
self.D._no_weight_decay = True
# bidirectional
if bimamba_type == "v1":
A_b = repeat(
torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device),
"n -> d n",
d=self.d_inner,
).contiguous()
A_b_log = torch.log(A_b) # Keep A_b_log in fp32
self.A_b_log = nn.Parameter(A_b_log)
self.A_b_log._no_weight_decay = True
elif bimamba_type == "v2" or bimamba_type=='v3':
A_b = repeat(
torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device),
"n -> d n",
d=self.d_inner,
).contiguous()
A_b_log = torch.log(A_b) # Keep A_b_log in fp32
self.A_b_log = nn.Parameter(A_b_log)
self.A_b_log._no_weight_decay = True
self.conv1d_b = nn.Conv1d(
in_channels=self.d_inner,
out_channels=self.d_inner,
bias=conv_bias,
kernel_size=d_conv,
groups=self.d_inner,
padding=d_conv - 1,
**factory_kwargs,
)
self.x_proj_b = nn.Linear(
self.d_inner, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs
)
self.dt_proj_b = nn.Linear(self.dt_rank, self.d_inner, bias=True, **factory_kwargs)
self.D_b = nn.Parameter(torch.ones(self.d_inner, device=device)) # Keep in fp32
self.D_b._no_weight_decay = True
self.in_proj_extra = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs)
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
def forward(self, hidden_states, inference_params=None,extra_emb=None):
"""
hidden_states: (B, L, D)
Returns: same shape as hidden_states
"""
batch, seqlen, dim = hidden_states.shape
conv_state, ssm_state = None, None
if inference_params is not None:
conv_state, ssm_state = self._get_states_from_cache(inference_params, batch)
if inference_params.seqlen_offset > 0:
# The states are updated inplace
out, _, _ = self.step(hidden_states, conv_state, ssm_state)
return out
if extra_emb is None:
# We do matmul and transpose BLH -> HBL at the same time
xz = rearrange(
self.in_proj.weight @ rearrange(hidden_states, "b l d -> d (b l)"),
"d (b l) -> b d l",
l=seqlen,
)
if self.in_proj.bias is not None:
xz = xz + rearrange(self.in_proj.bias.to(dtype=xz.dtype), "d -> d 1")
else:
xz = rearrange(
self.in_proj.weight @ rearrange(hidden_states, "b l d -> d (b l)"),
"d (b l) -> b d l",
l=seqlen,
)
if self.in_proj.bias is not None:
xz = xz + rearrange(self.in_proj.bias.to(dtype=xz.dtype), "d -> d 1")
extra_emb = rearrange(
self.in_proj_extra.weight @ rearrange(extra_emb, "b l d -> d (b l)"),
"d (b l) -> b d l",
l=seqlen,
)
if self.in_proj_extra.bias is not None:
extra_emb = extra_emb + rearrange(self.in_proj_extra.bias.to(dtype=xz.dtype), "d -> d 1")
A = -torch.exp(self.A_log.float()) # (d_inner, d_state)
# In the backward pass we write dx and dz next to each other to avoid torch.cat
if self.use_fast_path and inference_params is None: # Doesn't support outputting the states
if self.bimamba_type == "v1":
A_b = -torch.exp(self.A_b_log.float())
out = bimamba_inner_fn(
xz,
self.conv1d.weight,
self.conv1d.bias,
self.x_proj.weight,
self.dt_proj.weight,
self.out_proj.weight,
self.out_proj.bias,
A,
A_b,
None, # input-dependent B
None, # input-dependent C
self.D.float(),
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
)
elif self.bimamba_type == "v2":
A_b = -torch.exp(self.A_b_log.float())
out = mamba_inner_fn_no_out_proj(
xz,
self.conv1d.weight,
self.conv1d.bias,
self.x_proj.weight,
self.dt_proj.weight,
A,
None, # input-dependent B
None, # input-dependent C
self.D.float(),
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
)
out_b = mamba_inner_fn_no_out_proj(
xz.flip([-1]),
self.conv1d_b.weight,
self.conv1d_b.bias,
self.x_proj_b.weight,
self.dt_proj_b.weight,
A_b,
None,
None,
self.D_b.float(),
delta_bias=self.dt_proj_b.bias.float(),
delta_softplus=True,
)
# F.linear(rearrange(out_z, "b d l -> b l d"), out_proj_weight, out_proj_bias)
if not self.if_devide_out:
out = F.linear(rearrange(out + out_b.flip([-1]), "b d l -> b l d"), self.out_proj.weight, self.out_proj.bias)
else:
out = F.linear(rearrange(out + out_b.flip([-1]), "b d l -> b l d") / 2, self.out_proj.weight, self.out_proj.bias)
elif self.bimamba_type == "v3":
A_b = -torch.exp(self.A_b_log.float())
out = mamba_inner_fn_no_out_proj(
xz,
self.conv1d.weight,
self.conv1d.bias,
self.x_proj.weight,
self.dt_proj.weight,
A,
None, # input-dependent B
None, # input-dependent C
self.D.float(),
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
)
out_b = mamba_inner_fn_no_out_proj(
extra_emb,
self.conv1d_b.weight,
self.conv1d_b.bias,
self.x_proj_b.weight,
self.dt_proj_b.weight,
A_b,
None,
None,
self.D_b.float(),
delta_bias=self.dt_proj_b.bias.float(),
delta_softplus=True,
)
# F.linear(rearrange(out_z, "b d l -> b l d"), out_proj_weight, out_proj_bias)
if not self.if_devide_out:
out = F.linear(rearrange(out + out_b, "b d l -> b l d"), self.out_proj.weight, self.out_proj.bias)
else:
out = F.linear(rearrange(out + out_b, "b d l -> b l d") / 2, self.out_proj.weight, self.out_proj.bias)
else:
out = mamba_inner_fn(
xz,
self.conv1d.weight,
self.conv1d.bias,
self.x_proj.weight,
self.dt_proj.weight,
self.out_proj.weight,
self.out_proj.bias,
A,
None, # input-dependent B
None, # input-dependent C
self.D.float(),
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
)
else:
x, z = xz.chunk(2, dim=1)
# Compute short convolution
if conv_state is not None:
# If we just take x[:, :, -self.d_conv :], it will error if seqlen < self.d_conv
# Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise.
conv_state.copy_(F.pad(x, (self.d_conv - x.shape[-1], 0))) # Update state (B D W)
if causal_conv1d_fn is None:
x = self.act(self.conv1d(x)[..., :seqlen])
else:
assert self.activation in ["silu", "swish"]
x = causal_conv1d_fn(
x=x,
weight=rearrange(self.conv1d.weight, "d 1 w -> d w"),
bias=self.conv1d.bias,
activation=self.activation,
)
# We're careful here about the layout, to avoid extra transposes.
# We want dt to have d as the slowest moving dimension
# and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
x_dbl = self.x_proj(rearrange(x, "b d l -> (b l) d")) # (bl d)
dt, B, C = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1)
dt = self.dt_proj.weight @ dt.t()
dt = rearrange(dt, "d (b l) -> b d l", l=seqlen)
B = rearrange(B, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
C = rearrange(C, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
assert self.activation in ["silu", "swish"]
y = selective_scan_fn(
x,
dt,
A,
B,
C,
self.D.float(),
z=z,
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
return_last_state=ssm_state is not None,
)
if ssm_state is not None:
y, last_state = y
ssm_state.copy_(last_state)
y = rearrange(y, "b d l -> b l d")
out = self.out_proj(y)
if self.init_layer_scale is not None:
out = out * self.gamma
return out
def step(self, hidden_states, conv_state, ssm_state):
dtype = hidden_states.dtype
assert hidden_states.shape[1] == 1, "Only support decoding with 1 token at a time for now"
xz = self.in_proj(hidden_states.squeeze(1)) # (B 2D)
x, z = xz.chunk(2, dim=-1) # (B D)
# Conv step
if causal_conv1d_update is None:
conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) # Update state (B D W)
conv_state[:, :, -1] = x
x = torch.sum(conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1) # (B D)
if self.conv1d.bias is not None:
x = x + self.conv1d.bias
x = self.act(x).to(dtype=dtype)
else:
x = causal_conv1d_update(
x,
conv_state,
rearrange(self.conv1d.weight, "d 1 w -> d w"),
self.conv1d.bias,
self.activation,
)
x_db = self.x_proj(x) # (B dt_rank+2*d_state)
dt, B, C = torch.split(x_db, [self.dt_rank, self.d_state, self.d_state], dim=-1)
# Don't add dt_bias here
dt = F.linear(dt, self.dt_proj.weight) # (B d_inner)
A = -torch.exp(self.A_log.float()) # (d_inner, d_state)
# SSM step
if selective_state_update is None:
# Discretize A and B
dt = F.softplus(dt + self.dt_proj.bias.to(dtype=dt.dtype))
dA = torch.exp(torch.einsum("bd,dn->bdn", dt, A))
dB = torch.einsum("bd,bn->bdn", dt, B)
ssm_state.copy_(ssm_state * dA + rearrange(x, "b d -> b d 1") * dB)
y = torch.einsum("bdn,bn->bd", ssm_state.to(dtype), C)
y = y + self.D.to(dtype) * x
y = y * self.act(z) # (B D)
else:
y = selective_state_update(
ssm_state, x, dt, A, B, C, self.D, z=z, dt_bias=self.dt_proj.bias, dt_softplus=True
)
out = self.out_proj(y)
return out.unsqueeze(1), conv_state, ssm_state
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
device = self.out_proj.weight.device
conv_dtype = self.conv1d.weight.dtype if dtype is None else dtype
conv_state = torch.zeros(
batch_size, self.d_model * self.expand, self.d_conv, device=device, dtype=conv_dtype
)
ssm_dtype = self.dt_proj.weight.dtype if dtype is None else dtype
# ssm_dtype = torch.float32
ssm_state = torch.zeros(
batch_size, self.d_model * self.expand, self.d_state, device=device, dtype=ssm_dtype
)
return conv_state, ssm_state
def _get_states_from_cache(self, inference_params, batch_size, initialize_states=False):
assert self.layer_idx is not None
if self.layer_idx not in inference_params.key_value_memory_dict:
batch_shape = (batch_size,)
conv_state = torch.zeros(
batch_size,
self.d_model * self.expand,
self.d_conv,
device=self.conv1d.weight.device,
dtype=self.conv1d.weight.dtype,
)
ssm_state = torch.zeros(
batch_size,
self.d_model * self.expand,
self.d_state,
device=self.dt_proj.weight.device,
dtype=self.dt_proj.weight.dtype,
# dtype=torch.float32,
)
inference_params.key_value_memory_dict[self.layer_idx] = (conv_state, ssm_state)
else:
conv_state, ssm_state = inference_params.key_value_memory_dict[self.layer_idx]
# TODO: What if batch size changes between generation, and we reuse the same states?
if initialize_states:
conv_state.zero_()
ssm_state.zero_()
return conv_state, ssm_state
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。