代码拉取完成,页面将自动刷新
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from bundlesdf import *
import argparse
import os,sys
code_dir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(code_dir)
from segmentation_utils import Segmenter
def run_one_video(video_dir='/home/bowen/debug/2022-11-18-15-10-24_milk', out_folder='/home/bowen/debug/bundlesdf_2022-11-18-15-10-24_milk/', use_segmenter=False, use_gui=False):
set_seed(0)
os.system(f'rm -rf {out_folder} && mkdir -p {out_folder}')
cfg_bundletrack = yaml.load(open(f"{code_dir}/BundleTrack/config_ho3d.yml",'r'))
cfg_bundletrack['SPDLOG'] = int(args.debug_level)
cfg_bundletrack['depth_processing']["zfar"] = 1
cfg_bundletrack['depth_processing']["percentile"] = 95
cfg_bundletrack['erode_mask'] = 3
cfg_bundletrack['debug_dir'] = out_folder+'/'
cfg_bundletrack['bundle']['max_BA_frames'] = 10
cfg_bundletrack['bundle']['max_optimized_feature_loss'] = 0.03
cfg_bundletrack['feature_corres']['max_dist_neighbor'] = 0.02
cfg_bundletrack['feature_corres']['max_normal_neighbor'] = 30
cfg_bundletrack['feature_corres']['max_dist_no_neighbor'] = 0.01
cfg_bundletrack['feature_corres']['max_normal_no_neighbor'] = 20
cfg_bundletrack['feature_corres']['map_points'] = True
cfg_bundletrack['feature_corres']['resize'] = 400
cfg_bundletrack['feature_corres']['rematch_after_nerf'] = True
cfg_bundletrack['keyframe']['min_rot'] = 5
cfg_bundletrack['ransac']['inlier_dist'] = 0.01
cfg_bundletrack['ransac']['inlier_normal_angle'] = 20
cfg_bundletrack['ransac']['max_trans_neighbor'] = 0.02
cfg_bundletrack['ransac']['max_rot_deg_neighbor'] = 30
cfg_bundletrack['ransac']['max_trans_no_neighbor'] = 0.01
cfg_bundletrack['ransac']['max_rot_no_neighbor'] = 10
cfg_bundletrack['p2p']['max_dist'] = 0.02
cfg_bundletrack['p2p']['max_normal_angle'] = 45
cfg_track_dir = f'{out_folder}/config_bundletrack.yml'
yaml.dump(cfg_bundletrack, open(cfg_track_dir,'w'))
cfg_nerf = yaml.load(open(f"{code_dir}/config.yml",'r'))
cfg_nerf['continual'] = True
cfg_nerf['trunc_start'] = 0.01
cfg_nerf['trunc'] = 0.01
cfg_nerf['mesh_resolution'] = 0.005
cfg_nerf['down_scale_ratio'] = 1
cfg_nerf['fs_sdf'] = 0.1
cfg_nerf['far'] = cfg_bundletrack['depth_processing']["zfar"]
cfg_nerf['datadir'] = f"{cfg_bundletrack['debug_dir']}/nerf_with_bundletrack_online"
cfg_nerf['notes'] = ''
cfg_nerf['expname'] = 'nerf_with_bundletrack_online'
cfg_nerf['save_dir'] = cfg_nerf['datadir']
cfg_nerf_dir = f'{out_folder}/config_nerf.yml'
yaml.dump(cfg_nerf, open(cfg_nerf_dir,'w'))
if use_segmenter:
segmenter = Segmenter()
tracker = BundleSdf(cfg_track_dir=cfg_track_dir, cfg_nerf_dir=cfg_nerf_dir, start_nerf_keyframes=5, use_gui=use_gui)
reader = YcbineoatReader(video_dir=video_dir, shorter_side=480)
for i in range(0,len(reader.color_files),args.stride):
color_file = reader.color_files[i]
color = cv2.imread(color_file)
H0, W0 = color.shape[:2]
depth = reader.get_depth(i)
H,W = depth.shape[:2]
color = cv2.resize(color, (W,H), interpolation=cv2.INTER_NEAREST)
depth = cv2.resize(depth, (W,H), interpolation=cv2.INTER_NEAREST)
if i==0:
mask = reader.get_mask(0)
mask = cv2.resize(mask, (W,H), interpolation=cv2.INTER_NEAREST)
if use_segmenter:
mask = segmenter.run(color_file.replace('rgb','masks'))
else:
if use_segmenter:
mask = segmenter.run(color_file.replace('rgb','masks'))
else:
mask = reader.get_mask(i)
mask = cv2.resize(mask, (W,H), interpolation=cv2.INTER_NEAREST)
if cfg_bundletrack['erode_mask']>0:
kernel = np.ones((cfg_bundletrack['erode_mask'], cfg_bundletrack['erode_mask']), np.uint8)
mask = cv2.erode(mask.astype(np.uint8), kernel)
id_str = reader.id_strs[i]
pose_in_model = np.eye(4)
K = reader.K.copy()
tracker.run(color, depth, K, id_str, mask=mask, occ_mask=None, pose_in_model=pose_in_model)
tracker.on_finish()
run_one_video_global_nerf(out_folder=out_folder)
def run_one_video_global_nerf(out_folder='/home/bowen/debug/bundlesdf_scan_coffee_415'):
set_seed(0)
out_folder += '/' #!NOTE there has to be a / in the end
cfg_bundletrack = yaml.load(open(f"{out_folder}/config_bundletrack.yml",'r'))
cfg_bundletrack['debug_dir'] = out_folder
cfg_track_dir = f"{out_folder}/config_bundletrack.yml"
yaml.dump(cfg_bundletrack, open(cfg_track_dir,'w'))
cfg_nerf = yaml.load(open(f"{out_folder}/config_nerf.yml",'r'))
cfg_nerf['n_step'] = 2000
cfg_nerf['N_samples'] = 64
cfg_nerf['N_samples_around_depth'] = 256
cfg_nerf['first_frame_weight'] = 1
cfg_nerf['down_scale_ratio'] = 1
cfg_nerf['finest_res'] = 256
cfg_nerf['num_levels'] = 16
cfg_nerf['mesh_resolution'] = 0.002
cfg_nerf['n_train_image'] = 500
cfg_nerf['fs_sdf'] = 0.1
cfg_nerf['frame_features'] = 2
cfg_nerf['rgb_weight'] = 100
cfg_nerf['i_img'] = np.inf
cfg_nerf['i_mesh'] = cfg_nerf['i_img']
cfg_nerf['i_nerf_normals'] = cfg_nerf['i_img']
cfg_nerf['i_save_ray'] = cfg_nerf['i_img']
cfg_nerf['datadir'] = f"{out_folder}/nerf_with_bundletrack_online"
cfg_nerf['save_dir'] = copy.deepcopy(cfg_nerf['datadir'])
os.makedirs(cfg_nerf['datadir'],exist_ok=True)
cfg_nerf_dir = f"{cfg_nerf['datadir']}/config.yml"
yaml.dump(cfg_nerf, open(cfg_nerf_dir,'w'))
reader = YcbineoatReader(video_dir=args.video_dir, downscale=1)
tracker = BundleSdf(cfg_track_dir=cfg_track_dir, cfg_nerf_dir=cfg_nerf_dir, start_nerf_keyframes=5)
tracker.cfg_nerf = cfg_nerf
tracker.run_global_nerf(reader=reader, get_texture=True, tex_res=512)
tracker.on_finish()
print(f"Done")
def postprocess_mesh(out_folder):
mesh_files = sorted(glob.glob(f'{out_folder}/**/nerf/*normalized_space.obj',recursive=True))
print(f"Using {mesh_files[-1]}")
os.makedirs(f"{out_folder}/mesh/",exist_ok=True)
print(f"\nSaving meshes to {out_folder}/mesh/\n")
mesh = trimesh.load(mesh_files[-1])
with open(f'{os.path.dirname(mesh_files[-1])}/config.yml','r') as ff:
cfg = yaml.load(ff)
tf = np.eye(4)
tf[:3,3] = cfg['translation']
tf1 = np.eye(4)
tf1[:3,:3] *= cfg['sc_factor']
tf = tf1@tf
mesh.apply_transform(np.linalg.inv(tf))
mesh.export(f"{out_folder}/mesh/mesh_real_scale.obj")
components = trimesh_split(mesh, min_edge=1000)
best_component = None
best_size = 0
for component in components:
dists = np.linalg.norm(component.vertices,axis=-1)
if len(component.vertices)>best_size:
best_size = len(component.vertices)
best_component = component
mesh = trimesh_clean(best_component)
mesh.export(f"{out_folder}/mesh/mesh_biggest_component.obj")
mesh = trimesh.smoothing.filter_laplacian(mesh,lamb=0.5, iterations=3, implicit_time_integration=False, volume_constraint=True, laplacian_operator=None)
mesh.export(f'{out_folder}/mesh/mesh_biggest_component_smoothed.obj')
def draw_pose():
K = np.loadtxt(f'{args.out_folder}/cam_K.txt').reshape(3,3)
color_files = sorted(glob.glob(f'{args.out_folder}/color/*'))
mesh = trimesh.load(f'{args.out_folder}/textured_mesh.obj')
to_origin, extents = trimesh.bounds.oriented_bounds(mesh)
bbox = np.stack([-extents/2, extents/2], axis=0).reshape(2,3)
out_dir = f'{args.out_folder}/pose_vis'
os.makedirs(out_dir, exist_ok=True)
logging.info(f"Saving to {out_dir}")
for color_file in color_files:
color = imageio.imread(color_file)
pose = np.loadtxt(color_file.replace('.png','.txt').replace('color','ob_in_cam'))
pose = pose@np.linalg.inv(to_origin)
vis = draw_posed_3d_box(K, color, ob_in_cam=pose, bbox=bbox, line_color=(255,255,0))
id_str = os.path.basename(color_file).replace('.png','')
imageio.imwrite(f'{out_dir}/{id_str}.png', vis)
if __name__=="__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--mode', type=str, default="run_video", help="run_video/global_refine/draw_pose")
parser.add_argument('--video_dir', type=str, default="/home/bowen/debug/2022-11-18-15-10-24_milk/")
parser.add_argument('--out_folder', type=str, default="/home/bowen/debug/bundlesdf_2022-11-18-15-10-24_milk")
parser.add_argument('--use_segmenter', type=int, default=0)
parser.add_argument('--use_gui', type=int, default=1)
parser.add_argument('--stride', type=int, default=1, help='interval of frames to run; 1 means using every frame')
parser.add_argument('--debug_level', type=int, default=2, help='higher means more logging')
args = parser.parse_args()
if args.mode=='run_video':
run_one_video(video_dir=args.video_dir, out_folder=args.out_folder, use_segmenter=args.use_segmenter, use_gui=args.use_gui)
elif args.mode=='global_refine':
run_one_video_global_nerf(out_folder=args.out_folder)
elif args.mode=='draw_pose':
draw_pose()
else:
raise RuntimeError
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。