加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
valid.py 11.42 KB
一键复制 编辑 原始数据 按行查看 历史
Bugra Tekin 提交于 2019-10-18 19:07 . minor code clean up in validation
import os
import time
import torch
import argparse
import scipy.io
import warnings
from torch.autograd import Variable
from torchvision import datasets, transforms
import dataset
from darknet import Darknet
from utils import *
from MeshPly import MeshPly
def valid(datacfg, modelcfg, weightfile):
def truths_length(truths, max_num_gt=50):
for i in range(max_num_gt):
if truths[i][1] == 0:
return i
# Parse configuration files
data_options = read_data_cfg(datacfg)
valid_images = data_options['valid']
meshname = data_options['mesh']
backupdir = data_options['backup']
name = data_options['name']
gpus = data_options['gpus']
fx = float(data_options['fx'])
fy = float(data_options['fy'])
u0 = float(data_options['u0'])
v0 = float(data_options['v0'])
im_width = int(data_options['width'])
im_height = int(data_options['height'])
if not os.path.exists(backupdir):
makedirs(backupdir)
# Parameters
seed = int(time.time())
os.environ['CUDA_VISIBLE_DEVICES'] = gpus
torch.cuda.manual_seed(seed)
save = False
testtime = True
num_classes = 1
testing_samples = 0.0
if save:
makedirs(backupdir + '/test')
makedirs(backupdir + '/test/gt')
makedirs(backupdir + '/test/pr')
# To save
testing_error_trans = 0.0
testing_error_angle = 0.0
testing_error_pixel = 0.0
errs_2d = []
errs_3d = []
errs_trans = []
errs_angle = []
errs_corner2D = []
preds_trans = []
preds_rot = []
preds_corners2D = []
gts_trans = []
gts_rot = []
gts_corners2D = []
# Read object model information, get 3D bounding box corners
mesh = MeshPly(meshname)
vertices = np.c_[np.array(mesh.vertices), np.ones((len(mesh.vertices), 1))].transpose()
corners3D = get_3D_corners(vertices)
try:
diam = float(options['diam'])
except:
diam = calc_pts_diameter(np.array(mesh.vertices))
# Read intrinsic camera parameters
intrinsic_calibration = get_camera_intrinsic(u0, v0, fx, fy)
# Get validation file names
with open(valid_images) as fp:
tmp_files = fp.readlines()
valid_files = [item.rstrip() for item in tmp_files]
# Specicy model, load pretrained weights, pass to GPU and set the module in evaluation mode
model = Darknet(modelcfg)
model.print_network()
model.load_weights(weightfile)
model.cuda()
model.eval()
test_width = model.test_width
test_height = model.test_height
num_keypoints = model.num_keypoints
num_labels = num_keypoints * 2 + 3 # +2 for width, height, +1 for class label
# Get the parser for the test dataset
valid_dataset = dataset.listDataset(valid_images,
shape=(test_width, test_height),
shuffle=False,
transform=transforms.Compose([transforms.ToTensor(),]))
# Specify the number of workers for multiple processing, get the dataloader for the test dataset
kwargs = {'num_workers': 4, 'pin_memory': True}
test_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=1, shuffle=False, **kwargs)
logging(" Testing {}...".format(name))
logging(" Number of test samples: %d" % len(test_loader.dataset))
# Iterate through test batches (Batch size for test data is 1)
count = 0
for batch_idx, (data, target) in enumerate(test_loader):
t1 = time.time()
# Pass data to GPU
data = data.cuda()
target = target.cuda()
# Wrap tensors in Variable class, set volatile=True for inference mode and to use minimal memory during inference
data = Variable(data, volatile=True)
t2 = time.time()
# Forward pass
output = model(data).data
t3 = time.time()
# Using confidence threshold, eliminate low-confidence predictions
all_boxes = get_region_boxes(output, num_classes, num_keypoints)
t4 = time.time()
# Evaluation
# Iterate through all batch elements
for box_pr, target in zip([all_boxes], [target[0]]):
# For each image, get all the targets (for multiple object pose estimation, there might be more than 1 target per image)
truths = target.view(-1, num_labels)
# Get how many objects are present in the scene
num_gts = truths_length(truths)
# Iterate through each ground-truth object
for k in range(num_gts):
box_gt = list()
for j in range(1, 2*num_keypoints+1):
box_gt.append(truths[k][j])
box_gt.extend([1.0, 1.0])
box_gt.append(truths[k][0])
# Denormalize the corner predictions
corners2D_gt = np.array(np.reshape(box_gt[:18], [-1, 2]), dtype='float32')
corners2D_pr = np.array(np.reshape(box_pr[:18], [-1, 2]), dtype='float32')
corners2D_gt[:, 0] = corners2D_gt[:, 0] * im_width
corners2D_gt[:, 1] = corners2D_gt[:, 1] * im_height
corners2D_pr[:, 0] = corners2D_pr[:, 0] * im_width
corners2D_pr[:, 1] = corners2D_pr[:, 1] * im_height
preds_corners2D.append(corners2D_pr)
gts_corners2D.append(corners2D_gt)
# Compute corner prediction error
corner_norm = np.linalg.norm(corners2D_gt - corners2D_pr, axis=1)
corner_dist = np.mean(corner_norm)
errs_corner2D.append(corner_dist)
# Compute [R|t] by pnp
R_gt, t_gt = pnp(np.array(np.transpose(np.concatenate((np.zeros((3, 1)), corners3D[:3, :]), axis=1)), dtype='float32'), corners2D_gt, np.array(intrinsic_calibration, dtype='float32'))
R_pr, t_pr = pnp(np.array(np.transpose(np.concatenate((np.zeros((3, 1)), corners3D[:3, :]), axis=1)), dtype='float32'), corners2D_pr, np.array(intrinsic_calibration, dtype='float32'))
# Compute translation error
trans_dist = np.sqrt(np.sum(np.square(t_gt - t_pr)))
errs_trans.append(trans_dist)
# Compute angle error
angle_dist = calcAngularDistance(R_gt, R_pr)
errs_angle.append(angle_dist)
# Compute pixel error
Rt_gt = np.concatenate((R_gt, t_gt), axis=1)
Rt_pr = np.concatenate((R_pr, t_pr), axis=1)
proj_2d_gt = compute_projection(vertices, Rt_gt, intrinsic_calibration)
proj_2d_pred = compute_projection(vertices, Rt_pr, intrinsic_calibration)
norm = np.linalg.norm(proj_2d_gt - proj_2d_pred, axis=0)
pixel_dist = np.mean(norm)
errs_2d.append(pixel_dist)
# Compute 3D distances
transform_3d_gt = compute_transformation(vertices, Rt_gt)
transform_3d_pred = compute_transformation(vertices, Rt_pr)
norm3d = np.linalg.norm(transform_3d_gt - transform_3d_pred, axis=0)
vertex_dist = np.mean(norm3d)
errs_3d.append(vertex_dist)
# Sum errors
testing_error_trans += trans_dist
testing_error_angle += angle_dist
testing_error_pixel += pixel_dist
testing_samples += 1
count = count + 1
if save:
preds_trans.append(t_pr)
gts_trans.append(t_gt)
preds_rot.append(R_pr)
gts_rot.append(R_gt)
np.savetxt(backupdir + '/test/gt/R_' + valid_files[count][-8:-3] + 'txt', np.array(R_gt, dtype='float32'))
np.savetxt(backupdir + '/test/gt/t_' + valid_files[count][-8:-3] + 'txt', np.array(t_gt, dtype='float32'))
np.savetxt(backupdir + '/test/pr/R_' + valid_files[count][-8:-3] + 'txt', np.array(R_pr, dtype='float32'))
np.savetxt(backupdir + '/test/pr/t_' + valid_files[count][-8:-3] + 'txt', np.array(t_pr, dtype='float32'))
np.savetxt(backupdir + '/test/gt/corners_' + valid_files[count][-8:-3] + 'txt', np.array(corners2D_gt, dtype='float32'))
np.savetxt(backupdir + '/test/pr/corners_' + valid_files[count][-8:-3] + 'txt', np.array(corners2D_pr, dtype='float32'))
t5 = time.time()
# Compute 2D projection error, 6D pose error, 5cm5degree error
px_threshold = 5 # 5 pixel threshold for 2D reprojection error is standard in recent sota 6D object pose estimation works
eps = 1e-5
acc = len(np.where(np.array(errs_2d) <= px_threshold)[0]) * 100. / (len(errs_2d)+eps)
acc5cm5deg = len(np.where((np.array(errs_trans) <= 0.05) & (np.array(errs_angle) <= 5))[0]) * 100. / (len(errs_trans)+eps)
acc3d10 = len(np.where(np.array(errs_3d) <= diam * 0.1)[0]) * 100. / (len(errs_3d)+eps)
acc5cm5deg = len(np.where((np.array(errs_trans) <= 0.05) & (np.array(errs_angle) <= 5))[0]) * 100. / (len(errs_trans)+eps)
corner_acc = len(np.where(np.array(errs_corner2D) <= px_threshold)[0]) * 100. / (len(errs_corner2D)+eps)
mean_err_2d = np.mean(errs_2d)
mean_corner_err_2d = np.mean(errs_corner2D)
nts = float(testing_samples)
if testtime:
print('-----------------------------------')
print(' tensor to cuda : %f' % (t2 - t1))
print(' forward pass : %f' % (t3 - t2))
print('get_region_boxes : %f' % (t4 - t3))
print(' prediction time : %f' % (t4 - t1))
print(' eval : %f' % (t5 - t4))
print('-----------------------------------')
# Print test statistics
logging('Results of {}'.format(name))
logging(' Acc using {} px 2D Projection = {:.2f}%'.format(px_threshold, acc))
logging(' Acc using 10% threshold - {} vx 3D Transformation = {:.2f}%'.format(diam * 0.1, acc3d10))
logging(' Acc using 5 cm 5 degree metric = {:.2f}%'.format(acc5cm5deg))
logging(" Mean 2D pixel error is %f, Mean vertex error is %f, mean corner error is %f" % (mean_err_2d, np.mean(errs_3d), mean_corner_err_2d))
logging(' Translation error: %f m, angle error: %f degree, pixel error: % f pix' % (testing_error_trans/nts, testing_error_angle/nts, testing_error_pixel/nts) )
if save:
predfile = backupdir + '/predictions_linemod_' + name + '.mat'
scipy.io.savemat(predfile, {'R_gts': gts_rot, 't_gts':gts_trans, 'corner_gts': gts_corners2D, 'R_prs': preds_rot, 't_prs':preds_trans, 'corner_prs': preds_corners2D})
if __name__ == '__main__':
# Parse configuration files
parser = argparse.ArgumentParser(description='SingleShotPose')
parser.add_argument('--datacfg', type=str, default='cfg/ape.data') # data config
parser.add_argument('--modelcfg', type=str, default='cfg/yolo-pose.cfg') # network config
parser.add_argument('--weightfile', type=str, default='backup/ape/model_backup.weights') # imagenet initialized weights
args = parser.parse_args()
datacfg = args.datacfg
modelcfg = args.modelcfg
weightfile = args.weightfile
valid(datacfg, modelcfg, weightfile)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化