加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
generate_instruction.py 8.18 KB
一键复制 编辑 原始数据 按行查看 历史
Tiiiger 提交于 2023-03-13 08:15 . release
"""
batch_selfinstruct_generate.py
run:
python -m generate_instruction generate_instruction_following_data \
--output_dir ./ \
--num_instructions_to_generate 10 \
--model_name="text-davinci-003" \
"""
import time
import json
import os
import random
import re
import string
from functools import partial
from multiprocessing import Pool
import numpy as np
import tqdm
from rouge_score import rouge_scorer
import utils
import fire
def encode_prompt(prompt_instructions):
"""Encode multiple prompt instructions into a single string."""
prompt = open("./prompt.txt").read() + "\n"
for idx, task_dict in enumerate(prompt_instructions):
(instruction, input, output) = task_dict["instruction"], task_dict["input"], task_dict["output"]
instruction = re.sub(r"\s+", " ", instruction).strip().rstrip(":")
input = "<noinput>" if input.lower() == "" else input
prompt += f"###\n"
prompt += f"{idx + 1}. Instruction: {instruction}\n"
prompt += f"{idx + 1}. Input:\n{input}\n"
prompt += f"{idx + 1}. Output:\n{output}\n"
prompt += f"###\n"
prompt += f"{idx + 2}. Instruction:"
return prompt
def post_process_gpt3_response(num_prompt_instructions, response):
if response is None:
return []
raw_instructions = f"{num_prompt_instructions+1}. Instruction:" + response["text"]
raw_instructions = re.split("###", raw_instructions)
instructions = []
for idx, inst in enumerate(raw_instructions):
# if the decoding stops due to length, the last example is likely truncated so we discard it
if idx == len(raw_instructions) - 1 and response["finish_reason"] == "length":
continue
idx += num_prompt_instructions + 1
splitted_data = re.split(f"{idx}\.\s+(Instruction|Input|Output):", inst)
if len(splitted_data) != 7:
continue
else:
inst = splitted_data[2].strip()
input = splitted_data[4].strip()
input = "" if input.lower() == "<noinput>" else input
output = splitted_data[6].strip()
# filter out too short or too long instructions
if len(inst.split()) <= 3 or len(inst.split()) > 150:
continue
# filter based on keywords that are not suitable for language models.
blacklist = [
"image",
"images",
"graph",
"graphs",
"picture",
"pictures",
"file",
"files",
"map",
"maps",
"draw",
"plot",
"go to",
"video",
"audio",
"music",
"flowchart",
"diagram",
]
blacklist += []
if any(find_word_in_string(word, inst) for word in blacklist):
continue
# We found that the model tends to add "write a program" to some existing instructions, which lead to a lot of such instructions.
# And it's a bit comfusing whether the model need to write a program or directly output the result.
# Here we filter them out.
# Note this is not a comprehensive filtering for all programming instructions.
if inst.startswith("Write a program"):
continue
# filter those starting with punctuation
if inst[0] in string.punctuation:
continue
# filter those starting with non-english character
if not inst[0].isascii():
continue
instructions.append({"instruction": inst, "input": input, "output": output})
return instructions
def find_word_in_string(w, s):
return re.compile(r"\b({0})\b".format(w), flags=re.IGNORECASE).search(s)
def generate_instruction_following_data(
output_dir="./",
seed_tasks_path="./seed_tasks.jsonl",
num_instructions_to_generate=100,
model_name="text-davinci-003",
num_prompt_instructions=3,
request_batch_size=5,
temperature=1.0,
top_p=1.0,
num_cpus=16,
):
seed_tasks = [json.loads(l) for l in open(seed_tasks_path, "r")]
seed_instruction_data = [
{"instruction": t["instruction"], "input": t["instances"][0]["input"], "output": t["instances"][0]["output"]}
for t in seed_tasks
]
print(f"Loaded {len(seed_instruction_data)} human-written seed instructions")
os.makedirs(output_dir, exist_ok=True)
request_idx = 0
# load the LM-generated instructions
machine_instruction_data = []
if os.path.exists(os.path.join(output_dir, "regen.json")):
machine_instruction_data = utils.jload(os.path.join(output_dir, "regen.json"))
print(f"Loaded {len(machine_instruction_data)} machine-generated instructions")
# similarities = {}
scorer = rouge_scorer.RougeScorer(["rougeL"], use_stemmer=False)
# now let's generate new instructions!
progress_bar = tqdm.tqdm(total=num_instructions_to_generate)
if machine_instruction_data:
progress_bar.update(len(machine_instruction_data))
# first we tokenize all the seed instructions and generated machine instructions
all_instructions = [d["instruction"] for d in seed_instruction_data] + [
d["instruction"] for d in machine_instruction_data
]
all_instruction_tokens = [scorer._tokenizer.tokenize(inst) for inst in all_instructions]
while len(machine_instruction_data) < num_instructions_to_generate:
request_idx += 1
batch_inputs = []
for _ in range(request_batch_size):
# only sampling from the seed tasks
prompt_instructions = random.sample(seed_instruction_data, num_prompt_instructions)
prompt = encode_prompt(prompt_instructions)
batch_inputs.append(prompt)
decoding_args = utils.OpenAIDecodingArguments(
temperature=temperature,
n=1,
max_tokens=3072, # hard-code to maximize the length. the requests will be automatically adjusted
top_p=top_p,
stop=["\n20", "20.", "20."],
)
request_start = time.time()
results = utils.openai_completion(
prompts=batch_inputs,
model_name=model_name,
batch_size=request_batch_size,
decoding_args=decoding_args,
logit_bias={"50256": -100}, # prevent the <|endoftext|> token from being generated
)
request_duration = time.time() - request_start
process_start = time.time()
instruction_data = []
for result in results:
new_instructions = post_process_gpt3_response(num_prompt_instructions, result)
instruction_data += new_instructions
total = len(instruction_data)
keep = 0
for instruction_data_entry in instruction_data:
# computing similarity with the pre-tokenzied instructions
new_instruction_tokens = scorer._tokenizer.tokenize(instruction_data_entry["instruction"])
with Pool(num_cpus) as p:
rouge_scores = p.map(
partial(rouge_scorer._score_lcs, new_instruction_tokens),
all_instruction_tokens,
)
rouge_scores = [score.fmeasure for score in rouge_scores]
most_similar_instructions = {
all_instructions[i]: rouge_scores[i] for i in np.argsort(rouge_scores)[-10:][::-1]
}
if max(rouge_scores) > 0.7:
continue
else:
keep += 1
instruction_data_entry["most_similar_instructions"] = most_similar_instructions
instruction_data_entry["avg_similarity_score"] = float(np.mean(rouge_scores))
machine_instruction_data.append(instruction_data_entry)
all_instructions.append(instruction_data_entry["instruction"])
all_instruction_tokens.append(new_instruction_tokens)
progress_bar.update(1)
process_duration = time.time() - process_start
print(f"Request {request_idx} took {request_duration:.2f}s, processing took {process_duration:.2f}s")
print(f"Generated {total} instructions, kept {keep} instructions")
utils.jdump(machine_instruction_data, os.path.join(output_dir, "regen.json"))
def main(task, **kwargs):
globals()[task](**kwargs)
if __name__ == "__main__":
fire.Fire(main)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化