Create your Gitee Account
Explore and code with more than 12 million developers,Free private repositories !:)
Sign up
文件
Clone or Download
frcnn.py 6.70 KB
Copy Edit Raw Blame History
Bubbliiiing authored 2020-11-25 13:11 . Add files via upload
import colorsys
import copy
import math
import os
import time
import cv2
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
from PIL import Image, ImageDraw, ImageFont
from torch.nn import functional as F
from nets.frcnn import FasterRCNN
from nets.frcnn_training import get_new_img_size
from utils.utils import DecodeBox, loc2bbox, nms
#--------------------------------------------#
# 使用自己训练好的模型预测需要修改2个参数
# model_path和classes_path都需要修改!
#--------------------------------------------#
class FRCNN(object):
_defaults = {
"model_path" : 'model_data/voc_weights_resnet.pth',
"classes_path" : 'model_data/voc_classes.txt',
"confidence" : 0.5,
"iou" : 0.3,
"backbone" : "resnet50",
"cuda" : True,
}
@classmethod
def get_defaults(cls, n):
if n in cls._defaults:
return cls._defaults[n]
else:
return "Unrecognized attribute name '" + n + "'"
#---------------------------------------------------#
# 初始化faster RCNN
#---------------------------------------------------#
def __init__(self, **kwargs):
self.__dict__.update(self._defaults)
self.class_names = self._get_class()
self.generate()
self.mean = torch.Tensor([0,0,0,0]).repeat(self.num_classes+1)[None]
self.std = torch.Tensor([0.1, 0.1, 0.2, 0.2]).repeat(self.num_classes+1)[None]
if self.cuda:
self.mean = self.mean.cuda()
self.std = self.std.cuda()
#---------------------------------------------------#
# 获得所有的分类
#---------------------------------------------------#
def _get_class(self):
classes_path = os.path.expanduser(self.classes_path)
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
#---------------------------------------------------#
# 获得所有的分类
#---------------------------------------------------#
def generate(self):
# 计算总的种类
self.num_classes = len(self.class_names)
# 载入模型,如果原来的模型里已经包括了模型结构则直接载入。
self.model = FasterRCNN(self.num_classes,"predict",backbone=self.backbone)
print('Loading weights into state dict...')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
state_dict = torch.load(self.model_path, map_location=device)
self.model.load_state_dict(state_dict)
self.model = self.model.eval()
if self.cuda:
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
self.model = nn.DataParallel(self.model)
self.model = self.model.cuda()
print('{} model, anchors, and classes loaded.'.format(self.model_path))
# 画框设置不同的颜色
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
#---------------------------------------------------#
# 检测图片
#---------------------------------------------------#
def detect_image(self, image):
with torch.no_grad():
start_time = time.time()
image_shape = np.array(np.shape(image)[0:2])
old_width = image_shape[1]
old_height = image_shape[0]
old_image = copy.deepcopy(image)
width,height = get_new_img_size(old_width,old_height)
image = image.resize([width,height], Image.BICUBIC)
photo = np.array(image,dtype = np.float32)/255
photo = np.transpose(photo, (2, 0, 1))
images = []
images.append(photo)
images = np.asarray(images)
images = torch.from_numpy(images)
if self.cuda:
images = images.cuda()
roi_cls_locs, roi_scores, rois, roi_indices = self.model(images)
decodebox = DecodeBox(self.std, self.mean, self.num_classes)
outputs = decodebox.forward(roi_cls_locs, roi_scores, rois, height = height, width = width, nms_iou = self.iou, score_thresh = self.confidence)
if len(outputs)==0:
return old_image
bbox = outputs[:,:4]
conf = outputs[:, 4]
label = outputs[:, 5]
bbox[:, 0::2] = (bbox[:, 0::2])/width*old_width
bbox[:, 1::2] = (bbox[:, 1::2])/height*old_height
bbox = np.array(bbox,np.int32)
image = old_image
thickness = (np.shape(old_image)[0] + np.shape(old_image)[1]) // old_width*2
font = ImageFont.truetype(font='model_data/simhei.ttf',size=np.floor(3e-2 * np.shape(image)[1] + 0.5).astype('int32'))
for i, c in enumerate(label):
predicted_class = self.class_names[int(c)]
score = conf[i]
left, top, right, bottom = bbox[i]
top = top - 5
left = left - 5
bottom = bottom + 5
right = right + 5
top = max(0, np.floor(top + 0.5).astype('int32'))
left = max(0, np.floor(left + 0.5).astype('int32'))
bottom = min(np.shape(image)[0], np.floor(bottom + 0.5).astype('int32'))
right = min(np.shape(image)[1], np.floor(right + 0.5).astype('int32'))
# 画框框
label = '{} {:.2f}'.format(predicted_class, score)
draw = ImageDraw.Draw(image)
label_size = draw.textsize(label, font)
label = label.encode('utf-8')
print(label)
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
for i in range(thickness):
draw.rectangle(
[left + i, top + i, right - i, bottom - i],
outline=self.colors[int(c)])
draw.rectangle(
[tuple(text_origin), tuple(text_origin + label_size)],
fill=self.colors[int(c)])
draw.text(text_origin, str(label,'UTF-8'), fill=(0, 0, 0), font=font)
del draw
print("time:",time.time()-start_time)
return image
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化