代码拉取完成,页面将自动刷新
import matplotlib.pyplot as plt
import numpy as np
def reconstruct_points(p1, p2, m1, m2):
num_points = p1.shape[1]
res = np.ones((4, num_points))
for i in range(num_points):
res[:, i] = reconstruct_one_point(p1[:, i], p2[:, i], m1, m2)
return res
def reconstruct_one_point(pt1, pt2, m1, m2):
"""
pt1 and m1 * X are parallel and cross product = 0
pt1 x m1 * X = pt2 x m2 * X = 0
"""
A = np.vstack([
np.dot(skew(pt1), m1),
np.dot(skew(pt2), m2)
])
U, S, V = np.linalg.svd(A)
P = np.ravel(V[-1, :4])
return P / P[3]
def linear_triangulation(p1, p2, m1, m2):
"""
Linear triangulation (Hartley ch 12.2 pg 312) to find the 3D point X
where p1 = m1 * X and p2 = m2 * X. Solve AX = 0.
:param p1, p2: 2D points in homo. or catesian coordinates. Shape (3 x n)
:param m1, m2: Camera matrices associated with p1 and p2. Shape (3 x 4)
:returns: 4 x n homogenous 3d triangulated points
"""
num_points = p1.shape[1]
res = np.ones((4, num_points))
for i in range(num_points):
A = np.asarray([
(p1[0, i] * m1[2, :] - m1[0, :]),
(p1[1, i] * m1[2, :] - m1[1, :]),
(p2[0, i] * m2[2, :] - m2[0, :]),
(p2[1, i] * m2[2, :] - m2[1, :])
])
_, _, V = np.linalg.svd(A)
X = V[-1, :4]
res[:, i] = X / X[3]
return res
def compute_epipole(F):
""" Computes the (right) epipole from a
fundamental matrix F.
(Use with F.T for left epipole.)
"""
# return null space of F (Fx=0)
U, S, V = np.linalg.svd(F)
e = V[-1]
return e / e[2]
def plot_epipolar_lines(p1, p2, F, show_epipole=False):
""" Plot the points and epipolar lines. P1' F P2 = 0 """
plt.figure()
plt.suptitle('Epipolar lines', fontsize=16)
plt.subplot(1, 2, 1, aspect='equal')
# Plot the epipolar lines on img1 with points p2 from the right side
# L1 = F * p2
plot_epipolar_line(p1, p2, F, show_epipole)
plt.subplot(1, 2, 2, aspect='equal')
# Plot the epipolar lines on img2 with points p1 from the left side
# L2 = F' * p1
plot_epipolar_line(p2, p1, F.T, show_epipole)
def plot_epipolar_line(p1, p2, F, show_epipole=False):
""" Plot the epipole and epipolar line F*x=0
in an image given the corresponding points.
F is the fundamental matrix and p2 are the point in the other image.
"""
lines = np.dot(F, p2)
pad = np.ptp(p1, 1) * 0.01
mins = np.min(p1, 1)
maxes = np.max(p1, 1)
# epipolar line parameter and values
xpts = np.linspace(mins[0] - pad[0], maxes[0] + pad[0], 100)
for line in lines.T:
ypts = np.asarray([(line[2] + line[0] * p) / (-line[1]) for p in xpts])
valid_idx = ((ypts >= mins[1] - pad[1]) & (ypts <= maxes[1] + pad[1]))
plt.plot(xpts[valid_idx], ypts[valid_idx], linewidth=1)
plt.plot(p1[0], p1[1], 'ro')
if show_epipole:
epipole = compute_epipole(F)
plt.plot(epipole[0] / epipole[2], epipole[1] / epipole[2], 'r*')
def skew(x):
""" Create a skew symmetric matrix *A* from a 3d vector *x*.
Property: np.cross(A, v) == np.dot(x, v)
:param x: 3d vector
:returns: 3 x 3 skew symmetric matrix from *x*
"""
return np.array([
[0, -x[2], x[1]],
[x[2], 0, -x[0]],
[-x[1], x[0], 0]
])
def compute_P(p2d, p3d):
""" Compute camera matrix from pairs of
2D-3D correspondences in homog. coordinates.
"""
n = p2d.shape[1]
if p3d.shape[1] != n:
raise ValueError('Number of points do not match.')
# create matrix for DLT solution
M = np.zeros((3 * n, 12 + n))
for i in range(n):
M[3 * i, 0:4] = p3d[:, i]
M[3 * i + 1, 4:8] = p3d[:, i]
M[3 * i + 2, 8:12] = p3d[:, i]
M[3 * i:3 * i + 3, i + 12] = -p2d[:, i]
U, S, V = np.linalg.svd(M)
return V[-1, :12].reshape((3, 4))
def compute_P_from_fundamental(F):
""" Compute the second camera matrix (assuming P1 = [I 0])
from a fundamental matrix.
"""
e = compute_epipole(F.T) # left epipole
Te = skew(e)
return np.vstack((np.dot(Te, F.T).T, e)).T
def compute_P_from_essential(E):
""" Compute the second camera matrix (assuming P1 = [I 0])
from an essential matrix. E = [t]R
:returns: list of 4 possible camera matrices.
"""
U, S, V = np.linalg.svd(E)
# Ensure rotation matrix are right-handed with positive determinant
if np.linalg.det(np.dot(U, V)) < 0:
V = -V
# create 4 possible camera matrices (Hartley p 258)
W = np.array([[0, -1, 0], [1, 0, 0], [0, 0, 1]])
P2s = [np.vstack((np.dot(U, np.dot(W, V)).T, U[:, 2])).T,
np.vstack((np.dot(U, np.dot(W, V)).T, -U[:, 2])).T,
np.vstack((np.dot(U, np.dot(W.T, V)).T, U[:, 2])).T,
np.vstack((np.dot(U, np.dot(W.T, V)).T, -U[:, 2])).T]
return P2s
def correspondence_matrix(p1, p2):
p1x, p1y = p1[:2]
p2x, p2y = p2[:2]
return np.array([
p1x * p2x, p1x * p2y, p1x,
p1y * p2x, p1y * p2y, p1y,
p2x, p2y, np.ones(len(p1x))
]).T
return np.array([
p2x * p1x, p2x * p1y, p2x,
p2y * p1x, p2y * p1y, p2y,
p1x, p1y, np.ones(len(p1x))
]).T
def compute_image_to_image_matrix(x1, x2, compute_essential=False):
""" Compute the fundamental or essential matrix from corresponding points
(x1, x2 3*n arrays) using the 8 point algorithm.
Each row in the A matrix below is constructed as
[x'*x, x'*y, x', y'*x, y'*y, y', x, y, 1]
"""
A = correspondence_matrix(x1, x2)
# compute linear least square solution
U, S, V = np.linalg.svd(A)
F = V[-1].reshape(3, 3)
# constrain F. Make rank 2 by zeroing out last singular value
U, S, V = np.linalg.svd(F)
S[-1] = 0
if compute_essential:
S = [1, 1, 0] # Force rank 2 and equal eigenvalues
F = np.dot(U, np.dot(np.diag(S), V))
return F
def scale_and_translate_points(points):
""" Scale and translate image points so that centroid of the points
are at the origin and avg distance to the origin is equal to sqrt(2).
:param points: array of homogenous point (3 x n)
:returns: array of same input shape and its normalization matrix
"""
x = points[0]
y = points[1]
center = points.mean(axis=1) # mean of each row
cx = x - center[0] # center the points
cy = y - center[1]
dist = np.sqrt(np.power(cx, 2) + np.power(cy, 2))
scale = np.sqrt(2) / dist.mean()
norm3d = np.array([
[scale, 0, -scale * center[0]],
[0, scale, -scale * center[1]],
[0, 0, 1]
])
return np.dot(norm3d, points), norm3d
def compute_normalized_image_to_image_matrix(p1, p2, compute_essential=False):
""" Computes the fundamental or essential matrix from corresponding points
using the normalized 8 point algorithm.
:input p1, p2: corresponding points with shape 3 x n
:returns: fundamental or essential matrix with shape 3 x 3
"""
n = p1.shape[1]
if p2.shape[1] != n:
raise ValueError('Number of points do not match.')
# preprocess image coordinates
p1n, T1 = scale_and_translate_points(p1)
p2n, T2 = scale_and_translate_points(p2)
# compute F or E with the coordinates
F = compute_image_to_image_matrix(p1n, p2n, compute_essential)
# reverse preprocessing of coordinates
# We know that P1' E P2 = 0
F = np.dot(T1.T, np.dot(F, T2))
return F / F[2, 2]
def compute_fundamental_normalized(p1, p2):
return compute_normalized_image_to_image_matrix(p1, p2)
def compute_essential_normalized(p1, p2):
return compute_normalized_image_to_image_matrix(p1, p2, compute_essential=True)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。