加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
visualization.py 2.42 KB
一键复制 编辑 原始数据 按行查看 历史
Yuxin Wu 提交于 2019-08-05 11:39 . Make panopticapi a package
#!/usr/bin/env python2
'''
Visualization demo for panoptic COCO sample_data
The code shows an example of color generation for panoptic data (with
"generate_new_colors" set to True). For each segment distinct color is used in
a way that it close to the color of corresponding semantic class.
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import os, sys
import numpy as np
import json
import PIL.Image as Image
import matplotlib.pyplot as plt
from skimage.segmentation import find_boundaries
from panopticapi.utils import IdGenerator, rgb2id
# whether from the PNG are used or new colors are generated
generate_new_colors = True
json_file = './sample_data/panoptic_examples.json'
segmentations_folder = './sample_data/panoptic_examples/'
img_folder = './sample_data/input_images/'
panoptic_coco_categories = './panoptic_coco_categories.json'
with open(json_file, 'r') as f:
coco_d = json.load(f)
ann = np.random.choice(coco_d['annotations'])
with open(panoptic_coco_categories, 'r') as f:
categories_list = json.load(f)
categegories = {category['id']: category for category in categories_list}
# find input img that correspond to the annotation
img = None
for image_info in coco_d['images']:
if image_info['id'] == ann['image_id']:
try:
img = np.array(
Image.open(os.path.join(img_folder, image_info['file_name']))
)
except:
print("Undable to find correspoding input image.")
break
segmentation = np.array(
Image.open(os.path.join(segmentations_folder, ann['file_name'])),
dtype=np.uint8
)
segmentation_id = rgb2id(segmentation)
# find segments boundaries
boundaries = find_boundaries(segmentation_id, mode='thick')
if generate_new_colors:
segmentation[:, :, :] = 0
color_generator = IdGenerator(categegories)
for segment_info in ann['segments_info']:
color = color_generator.get_color(segment_info['category_id'])
mask = segmentation_id == segment_info['id']
segmentation[mask] = color
# depict boundaries
segmentation[boundaries] = [0, 0, 0]
if img is None:
plt.figure()
plt.imshow(segmentation)
plt.axis('off')
else:
plt.figure(figsize=(9, 5))
plt.subplot(121)
plt.imshow(img)
plt.axis('off')
plt.subplot(122)
plt.imshow(segmentation)
plt.axis('off')
plt.tight_layout()
plt.show()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化