文件
克隆/下载
template_matching_demo.py 2.06 KB
一键复制 编辑 原始数据 按行查看 历史
import numpy as np
import cv2
import pysift
from matplotlib import pyplot as plt
import logging
logger = logging.getLogger(__name__)
MIN_MATCH_COUNT = 10
img1 = cv2.imread('box.png', 0) # queryImage
img2 = cv2.imread('box_in_scene.png', 0) # trainImage
# Compute SIFT keypoints and descriptors
kp1, des1 = pysift.computeKeypointsAndDescriptors(img1)
kp2, des2 = pysift.computeKeypointsAndDescriptors(img2)
# Initialize and use FLANN
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
# Lowe's ratio test
good = []
for m, n in matches:
if m.distance < 0.7 * n.distance:
good.append(m)
if len(good) > MIN_MATCH_COUNT:
# Estimate homography between template and scene
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
M = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)[0]
# Draw detected template in scene image
h, w = img1.shape
pts = np.float32([[0, 0],
[0, h - 1],
[w - 1, h - 1],
[w - 1, 0]]).reshape(-1, 1, 2)
dst = cv2.perspectiveTransform(pts, M)
img2 = cv2.polylines(img2, [np.int32(dst)], True, 255, 3, cv2.LINE_AA)
h1, w1 = img1.shape
h2, w2 = img2.shape
nWidth = w1 + w2
nHeight = max(h1, h2)
hdif = int((h2 - h1) / 2)
newimg = np.zeros((nHeight, nWidth, 3), np.uint8)
for i in range(3):
newimg[hdif:hdif + h1, :w1, i] = img1
newimg[:h2, w1:w1 + w2, i] = img2
# Draw SIFT keypoint matches
for m in good:
pt1 = (int(kp1[m.queryIdx].pt[0]), int(kp1[m.queryIdx].pt[1] + hdif))
pt2 = (int(kp2[m.trainIdx].pt[0] + w1), int(kp2[m.trainIdx].pt[1]))
cv2.line(newimg, pt1, pt2, (255, 0, 0))
plt.imshow(newimg)
plt.show()
else:
print("Not enough matches are found - %d/%d" % (len(good), MIN_MATCH_COUNT))
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化