克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
Apache-2.0

[TOC]

EsClientRHL

EsClientRHL是一个可基于springboot的elasticsearch java客户端调用封装工具,通过elasticsearch官网推荐的RestHighLevelClient实现,内置了es索引结构工具、es索引数据增删改工具、es查询工具、es数据分析工具或者es用法脚手架,能够轻松集成并非常方便的使用。

快速使用

这里有一个简易集成ESClientRHL的springboot版本demo,快速搞定集成

选择EsClientRHL原因

  • 目前spring-data-elasticsearch底层采用es官方TransportClient,而es官方计划放弃TransportClient,工具以es官方推荐的RestHighLevelClient进行封装
  • spring-data-elasticsearch支持的api有限,而EsClientRHL支持更丰富的api调用
  • 能够极大简化java client API,并不断更新,让es更高级的功能更轻松的使用
  • 支持两种自动化的功能,减轻开发者工作量,使其更专注于业务开发
  1. 支持启动自动扫描elasticsearch索引实体类,并为没有索引结构的实体自动创建索引结构
  2. 支持开发者只定义一个接口,就拥有了常用与es交互的黑魔法
  • 组件中包含了:es索引数据增删改、es查询、es数据分析等丰富的API工具,开发者可以通过EsClientRHL来参考在java中如何与elasticsearch进行各种交互
  • EsClientRHL中部分API结合了实际场景中最佳实践的使用方法
  • 总之ESClientRHL能给您带来帮助,那它就有存在的价值,如果对您有些许帮助,请不吝Star https://gitee.com/zxporz/ESClientRHL

版本说明

基于elasticsearch7+版本进行开发,elasticsearch7的大版本基本兼容,如有不兼容问题请报issue 特别注意:建议在引入的springboot工程中pom文件添加elasticsearch版本号,否则可能被springboot parent工程覆盖。

<properties>
……
<elasticsearch.version>7.3.1</elasticsearch.version>
……
</properties>

更新日志

更新日期 更新内容
2019-03-19 修复了一个搜索建议mapping的bug,增加了按照条件删除的api、添加了检索时可以检索多个索引的api以及注解配置方式(详见api更新)
2019-04-16 优化了@EnableESTools获取entity地址的逻辑,并添加了esclientrhl-start的支持,增加ImportBeanDefinitionRegistrar(彩蛋)
2019-06-07 应留言要求,本次提交一个压缩包(根目录testdemo.zip),压缩包内主要有测试代码调用的demo以及使用文档的pdf版本
2019-09-01 添加了对es7+的支持,添加es7的分支以对7+版本的支持,默认版本仍然为es6请大家注意
2019-09-01 由于添加了对es7+的支持maven pom版本为了和es保持一致,所以7对应的版本号为7.0.0,6的暂时不做调整(后续会调)
2019-09-05 优化了内部自动化功能的部分逻辑
2019-09-05 增加了极简开发的新特性,可以直接定义接口调用一些简单常用的方法与elasticsearch交互(类似于JPA)
2019-09-05 调整默认版本为7.0.0,es6对应的组件版本号更新为6.0.0
2019-09-06 ESMetaData中indexType不再必需,ElasticsearchTemplate添加了一个批量更新的方法,详见下文api部分更新
2019-09-17 添加了查询方法searchMore,可以直接指定最大返回结果,并把此方法添加到接口代理
2019-10-10 增加了分批次批量新增
更新索引数据的方法
分页、高亮、排序、查询方法增加了返回指定字段结果的功能
7+版本将默认的主分片数调整为1
增加了mapping注解对null_value的支持
添加了支持uri querystring的方法
添加了支持sql查询的方法
后续还有一大批实用功能更新
2019-10-11 为了避免歧义mapping定制的autocomplete更名为ngram,功能使用不变
添加了Phrase Suggester搜索方法
完善了模版搜索的方法
2019-10-11 更新了disMaxQuery、multiMatchQuery(三种)、functionScoreQuery、boostingQuery的最佳实践和用法说明
2019-10-14 增加了高级查询的方法:支持原有的分页、排序、高亮查询,将指定字段的策略移动到高级查询方法,并增加了路由设定的功能
增加了路由保存的方法
增加了路由删除的方法
2019-10-17 添加了分步骤scroll的方法,以避免数量大造成内存溢出的问题,并将原有scroll方法设置为不推荐
高级查询中添加了search after的支持
修复排序字段报错的bug
2019-10-23 添加了用户认证的配置
2019-11-21 修复了有用户认证的前提下,sql查询报错的问题
2019-11-21 优化查询结果对为绑定ESID注解主键字段的赋值(防止主键字段查询结果为空)
2020-1-1 添加了对nested类型的支持,请参考“针对nested类型支持的说明”、“nested查询”两节说明,特别感谢jangojing提供的思路
2020-09-09 修复了若干issue
增加了别名操作索引的功能
增加了滚动索引的支持
2020-09-10 增加了对geo经纬度坐标的支持
2020-10-14 上传maven中央仓库,注意groupId变更为cn.zxporz
2020-11-05 cardinality增加precision_threshold参数的选项
2021-01-30 索引配置增加maxResultWindow最大分页深度
添加http连接池的配置
2021-02-03 优化当不加@ESMapping注解时,根据类型自动判定data_type
2021-02-04 增加rollover配置自动执行定时任务,并自动执行的功能
2021-02-09 增加自动为indexName添加后缀的配置
增加启动时不自动创建索引的配置
2021-03-09 增加清除scroll的方法
2021-03-10 增加使用示例工程(不断更新)demo
2021-04-07 增加高亮的复杂参数设定issue
2021-04-09 增加非springboot集成demoESClientRHLSpring
2021-11-24 重磅更新,支持sql查询自动序列化
2021-11-24 重磅更新,支持自定义settings,以及配合自定义settings使用的特性normalizer、自定义分词器

使用前你应该具有哪些技能

  • springboot
  • maven
  • elasticsearch基础概念
  • elasticsearch rest api含义以及用法

工具功能范围介绍

自动代理接口简化开发

  • 自动代理接口,简化开发

索引结构管理

  • 判断索引是否存在
  • 索引结构创建
  • 自动定制索引结构mapping
  • 删除索引结构
  • 支持滚动索引

CRUD

  • LowLevelClient查询
  • 新增索引数据
  • 批量新增索引数据
  • 分批次新增索引数据
  • 覆盖更新索引数据
  • 部分更新索引数据
  • 批量更新索引
  • 分批次批量更新索引
  • 删除索引数据
  • 判断索引数据是否存在
  • 原生查询
  • 支持uri query string的查询
  • 支持sql查询
  • 支持查询条件的定制查询
  • 支持查询条件+最大返回条数的定制查询
  • 支持分页、高亮、排序、查询条件的定制查询
  • 高级查询(支持分页、高亮、排序、路由、指定结果字段、查询条件、search after)
  • count查询
  • scroll查询(用于大数据量查询)
  • 模版查询-保存模版
  • 模版查询-注册模版
  • 模版查询-内联模版
  • 搜索建议completion suggest
  • 搜索建议phrase suggest
  • 根据ID查询
  • mget查询
  • 按照多索引查询说明(2019-03-19新增)
  • 支持Alias查询、Alias可写索引切换

聚合查询

  • 原生聚合查询
  • 普通聚合查询
  • 分组普通聚合查询
  • 下钻(2层)聚合查询
  • 统计聚合查询
  • 分组统计聚合查询
  • 基数查询
  • 百分比聚合查询
  • 百分等级聚合查询
  • 过滤器聚合查询
  • 直方图聚合查询
  • 日期直方图聚合查询

工具源码结构介绍

annotation

存放一些注解,用于简化组件使用

config

基于springboot的自动化的功能,包括自动配置es客户端组件

auto

自动管理索引结构的功能 自动生成接口代理的功能

enums

基础数据的枚举

index

索引结构管理的功能包

repository

CURD+聚合的功能包

util

内部工具包

开始使用

使用示例

https://gitee.com/zxporz/esclientrhlDemo

使用前说明

  • 组件基于JDK1.8编译,请注意JDK版本的选择
  • 目前只支持springboot方式集成,如果需要与普通spring系统集成需要做简单改造
  • 如果您并不需要使用组件自带的集成方式,仅需参考与es集成的方式请注意关注ElasticsearchTemplateImpl类中的代码即可

maven依赖

pom引入

<dependency>
    <groupId>cn.zxporz</groupId>
    <artifactId>esclientrhl</artifactId>
    <version>7.0.0</version>
</dependency>

特别注意:建议在引入的springboot工程中pom文件添加elasticsearch版本号,否则可能被springboot parent工程覆盖。

<properties>
……
<elasticsearch.version>7.3.1</elasticsearch.version>
……
</properties>

引入组件

添加EnableESTools注解

在springboot启动类上添加

@EnableESTools注解能够帮助开发人员自动注入工具服务,简化配置,并引入自动发现es索引结构实体类的功能,识别ESCRepository接口并自动生成代理的功能

EnableESTools注解用法: 用法1:最全配置

@EnableESTools(
basePackages = {"ESCRepository接口包路径数组"},
entityPath = {"实体类包路径数组"},
printregmsg = true)//详见运维功能部分

用法2:最简配置 默认扫描启动类所在包下的所有类

@EnableESTools

用法3:只扫描实体类路径

@EnableESTools({"实体类包路径数组"})

将@EnableESTools配置于SpringBoot启动类上

@SpringBootApplication
@EnableESTools
public class EsdemoApplication {
	public static void main(String[] args) {
		SpringApplication.run(EsdemoApplication.class, args);
	}
}
application.properties添加elasticsearch服务的uri

application.properties配置elasticsearch服务的uri,如果有多个(集群情况)请用半角逗号,隔开,必须配置

elasticsearch.host=127.0.0.1:9200

application.properties添加elasticsearch httpclient的连接池参数配置

#连接池里的最大连接数
elasticsearch.max_connect_total=30
#某一个/每服务每次能并行接收的请求数量
elasticsearch.max_connect_per_route=10
#http clilent中从connetcion pool中获得一个connection的超时时间
elasticsearch.connection_request_timeout_millis=2000
#响应超时时间,超过此时间不再读取响应
elasticsearch.socket_timeout_millis=30000
#链接建立的超时时间
elasticsearch.connect_timeout_millis=2000
application.properties添加elasticsearch用户名密码(基于xpack仅支持es7+的版本)

没有可以不用配置

elasticsearch.username=elastic
elasticsearch.password=changeme

使用组件

在spring管理的bean内直接自动注入组件内置的两个工具服务:ElasticsearchTemplate、ElasticsearchIndex并调用相关api即可

@Service
public class CompletionSuggestServiceImpl implements CompletionSuggestService {
    @Autowired
    ElasticsearchTemplate<Book,String> elasticsearchTemplate;

如果只想引入一些简单的基础功能,推荐采用接口代理的方式,使用将会更加简便 定义接口,只需要继承ESCRepository接口即可

public interface Main2Repository<Main2,String> extends ESCRepository<Main2,String> {
}

使用时,只需要将定义的接口引入即可

@Autowired
Main2Repository main2Repository;

使用方法与ElasticsearchTemplate大同小异,只有一些比较基础的方法,去掉了Clazz类类型的入参

Main2 main2 = new Main2();
main2.setProposal_no("qq123549440");
main2.setBusiness_nature_name("渠道");
main2.setAppli_name("esclientrhl");
main2Repository.save(main2);
System.out.println(main2Repository.getById("22222"));

Map map2 = main2Repository.aggs("proposal_no", AggsType.count,null,"appli_name");
map2.forEach((o, o2) -> System.out.println(o + "=====" + o2));

注意事项: 如果采用自动代理接口的方式,需要注意以下几点:

  1. 接口必须继承自ESCRepository,并且定义接口时必须注明泛型的真实类型
  2. 对应的实体类必须添加ESMetaData注解,组件才能自动识别
  3. 实体类名称整个工程内不能重复,否则会导致生成代理类失败

索引管理功能

元数据配置

用于定制es索引结构对应实体类的元数据

@ESMetaData(indexName = "index", number_of_shards = 5,number_of_replicas = 0)

包含的主要配置信息以及默认值如下

/**
 * 检索时的索引名称,如果不配置则默认为和indexName一致,该注解项仅支持搜索
 * 并不建议这么做,建议通过特定方法来做跨索引查询
 */
String[] searchIndexNames() default {};
/**
 * 索引名称,必须配置
 */
String indexName();
/**
 * 索引类型,可以不配置,不配置默认为_doc,墙裂建议每个index下只有一个type
 */
String indexType() default "";
/**
 * 主分片数量
 */
int number_of_shards() default 5;
/**
 * 备份分片数量
 */
int number_of_replicas() default 1;
/**
 * 是否打印日志
 * @return
 */
boolean printLog() default false;
/**
 * 别名、如果配置了后续增删改查都基于这个alias
 * 当配置了此项后自动创建索引功能将失效
 * indexName为aliasName
 * @return
 */
 boolean alias() default false;

/**
* 别名对应的索引名称
* 当前配置仅生效于配置了alias但没有配置rollover
* 注意:所有配置的index必须存在
* @return
*/
String[] aliasIndex() default {};

/**
* 当配置了alias后,指定哪个index为writeIndex
* 当前配置仅生效于配置了alias但没有配置rollover
* 注意:配置的index必须存在切在aliasIndex中
* @return
*/
String writeIndex() default "";

/**
* 当配置了rollover为true时,开启rollover功能(并忽略其他alias的配置)
* aliasName为indexName
* 索引名字规格为:indexName-yyyy.mm.dd-00000n
* 索引滚动生成策略如下
* @return
*/
boolean rollover() default false;

 /**
 * 自动执行rollover相关配置
 * 自动执行rollover开关
 * @return
 */
 boolean autoRollover() default false;

/**
* 自动执行rollover相关配置
* 项目启动后延迟autoRolloverInitialDelay时间后开始执行
* @return
*/
long autoRolloverInitialDelay() default 0L;

/**
* 自动执行rollover相关配置
* 项目启动后每间隔autoRolloverPeriod执行一次
* @return
*/
long autoRolloverPeriod() default 4L;

/**
* 自动执行rollover相关配置
* 单位时间配置,与autoRolloverPeriod、autoRolloverInitialDelay对应
* @return
*/
TimeUnit  autoRolloverTimeUnit() default TimeUnit.HOURS;


/**
* 当前索引超过此项配置的时间后生成新的索引
* @return
*/
long rolloverMaxIndexAgeCondition() default 0L;

/**
* 与rolloverMaxIndexAgeCondition联合使用,对应rolloverMaxIndexAgeCondition的单位
* @return
*/
TimeUnit rolloverMaxIndexAgeTimeUnit() default TimeUnit.DAYS;

/**
* 当前索引文档数量超过此项配置的数字后生成新的索引
* @return
*/
long rolloverMaxIndexDocsCondition() default 0L;

/**
* 当前索引大小超过此项配置的数字后生成新的索引
* @return
*/
long rolloverMaxIndexSizeCondition() default 0L;

/**
* 与rolloverMaxIndexSizeCondition联合使用,对应rolloverMaxIndexSizeCondition的单位
* @return
*/
ByteSizeUnit rolloverMaxIndexSizeByteSizeUnit() default ByteSizeUnit.GB;

/**
* 最大分页深度
* @return
*/
long maxResultWindow() default 10000L;

/**
* 索引名称是否自动包含后缀
* @return
*/
boolean suffix() default false;

/**
* 是否自动创建索引
* @return
*/
boolean autoCreateIndex() default true;
索引结构配置

用于定制es索引结构对应实体类的索引结构,以简化创建索引工作。将相关注解配置于实体类field上,用于标识field对应elasticsearch索引结构字段的相关信息

@ESID
private String proposal_no;
@ESMapping(datatype = DataType.keyword_type)
private String risk_code;
@ESMapping(datatype = DataType.text_type)
private String risk_name;

@ESID标识es主键(自动对应es索引数据_id字段),注意:主键的类型需要与ElasticsearchTemplate的第二泛型一致

@ESMapping标识字段对应es索引结构字段的相关信息

/**
 * 数据类型(包含 关键字类型)
 */
DataType datatype() default DataType.text_type;
/**
 * 间接关键字
 */
boolean keyword() default true;
/**
 * 关键字忽略字数
 */
int ignore_above() default 256;
/**
 * 是否支持ngram,高效全文搜索提示(定制gram分词器,请参照官方例https://www.elastic.co/guide/en/elasticsearch/reference/7.x/analysis-ngram-tokenizer.html)
 */
boolean ngram() default false;
/**
 * 是否支持suggest,高效前缀搜索提示
 */
boolean suggest() default false;
/**
 * 索引分词器设置(研究类型)
 */
Analyzer analyzer() default Analyzer.standard;
/**
 * 搜索内容分词器设置
 */
Analyzer search_analyzer() default Analyzer.standard;
/**
 * 是否允许被搜索
 */
boolean allow_search() default true;

/**
 * 拷贝到哪个字段,代替_all
 */
String copy_to() default "";

/**
* null_value指定,默认空字符串不会为mapping添加null_value
* 对于值是null的进行处理,当值为null是按照注解指定的‘null_value’值进行查询可以查到
* 需要注意的是要与根本没有某字段区分(没有某字段需要用Exists Query进行查询)
* 建议设置值为NULL_VALUE
* @return
*/
String null_value() default "";

/**
* nested对应的类型,默认为Object.Class。
* 对于DataType是nested_type的类型才需要添加的注解,通过这个注解生成嵌套类型的索引
* 例如:
* @ESMapping(datatype = DataType.nested_type, nested_class = EsFundDto.class)
*
* @return
*/
Class nested_class() default Object.class;

如果对字段类型要求没有那么高,则不配置,组件可以支持自动适配mapping

根据配置信息自动创建索引结构mapping

项目启动时,组件会自动识别es实体类上配置的@ESMetaData注解,如果对应的索引结构没有创建,自动根据mapping注解配置创建相关索引结构。

如果实体类不在启动类的包路径下,如需启用此功能,需要在启动注解上配置实体类路径。

@EnableESTools(entityPath = "com.*.esdemo.domain")
GEO类型

https://www.elastic.co/guide/en/elasticsearch/client/java-api/7.9/java-geo-queries.html

如果需要支持经纬度搜索,则需要增加一个经纬度的字段

    @ESMapping(datatype = DataType.geo_point_type)
    GeoEntity geo;

data_typeDataType.geo_point_type,实体类固定为GeoEntity

参考代码如下:

GeoEntity gp1 = new GeoEntity(1,1);
GeoPojo g1 = new GeoPojo();
g1.setGeo(gp1);
g1.setPlace("1");
g1.setUserId(1L);
g1.setUserName("1");
elasticsearchTemplate.save(Arrays.asList(g1));
GeoPoint topLeft = new GeoPoint(32.030249,118.789703);
        GeoPoint bottomRight = new GeoPoint(32.024341,118.802171);
        GeoBoundingBoxQueryBuilder geoBoundingBoxQueryBuilder =
                QueryBuilders.geoBoundingBoxQuery("geo")
                .setCorners(topLeft,bottomRight);
        List<GeoPojo> search = elasticsearchTemplate.search(geoBoundingBoxQueryBuilder, GeoPojo.class);
针对nested类型支持的说明

包含有nested成员变量的索引不支持部分字段更新功能(支持覆盖更新) nested对象中的变量不支持聚合查询 支持自动创建nested注解创建mapping但目前nested只支持一层nested并且不能支持复杂的mapping配置(只支持对type的配置)

配置示例(下面是list方式,也支持非list方式),datatype除了需要指定为nested_type枚举类型外,还需要指定nested类类型

@ESMapping(datatype = DataType.nested_type,nested_class = Actors.class)
private List<Actors> actors;

Actors中配置@ESMapping即可

public class Actors {
    @ESMapping
    private String first_name;
    @ESMapping
    private String last_name;
ngram、completion suggest、phrase suggest的区别

ngram

  • ngram需要定制setting和mapping

  • 仍然利用倒排索引,将单词中字母或字进位组成倒排索引(edge ngram),可以高效前缀检索,可以从中间的词进行检索

  • 检索时采用match_phrase即可

completion suggest

  • completion suggest需要定制mapping

  • 没有使用倒排索引,而是使用了倒排索引词典FST数据结构并缓存与内存,有非常好的性能,只能严格前缀检索,不支持中间的词检索

  • 检索需要单独的api

phrase suggest

  • phrase suggest不需要定制

  • 没有completion suggest性能好,侧重点是匹配相似的词(输入错误的词),根据相对模糊的输入词条给出搜索建议以提供更好的搜索体验和准备下一步检索提供基础

  • 检索需要单独的api

手工创建或删除索引结构
elasticsearchIndex.dropIndex(Main2.class);
elasticsearchIndex.createIndex(Main2.class);
判断索引是否存在
/**
 * 索引是否存在
 * @param clazz传入es索引结构对应实体类
 * @throws Exception
 */
public boolean exists(Class<T> clazz) throws Exception;
elasticsearchIndex.exists(Main2.class)
通过JSON创建索引mapping
/**
* 创建索引
* @param settings settings map信息
* @param settingsList settings map信息(列表)
* @param mappingJson mapping json
* @param indexName 索引名称
* @throws Exception
*/
public void createIndex(Map<String,String> settings,Map<String,String[]> settingsList,String mappingJson,String indexName) throws Exception;
   
配置不自动创建索引(启动时)

ESMetaData注解中配置autoCreateIndex此项配置默认为false,即不自动创建索引

@ESMetaData(indexName = "main10", number_of_shards = 5,number_of_replicas = 0,autoCreateIndex = false
)
public class Main10
配置索引名称自动根据suffix配置为索引名称添加后缀

此项配置对searchIndexNames无效

ESMetaData注解中配置suffixtrue,此项配置默认为false 配置为true时,applciation.yml需要增加配置elasticsearch.index.suffix=dev才会将indexName自动设置为indexName_dev,不配置此项则即使suffixtrueindexName也不会自动添加后缀

@ESMetaData(indexName = "main10", number_of_shards = 5,number_of_replicas = 0,suffix = true
)
public class Main10
elasticsearch.index.suffix=dev
Alias操作

当你需要操作一个Alias(别名)时,可以在@ESMetaData注解中配置aliastrue 索引必须提前创建,别名自动创建 同时设置aliasIndex即alias绑定的索引列表,需要注意的是这些索引必须是已经存在的,否则无法创建别名成功 同时也需要设置writeIndex即alias绑定的索引列表中当前写入的索引名称,需要注意的是这个索引名称不仅仅需要存在并且还需要在aliasIndex配置中存在

@ESMetaData中配置的indexName其实是alias名字

例如下面的代码,别名为testalias,绑定的索引名称是testalias-01、testalias-02、testalias-03,并且写入操作对应的是testalias-02索引

@ESMetaData(indexName = "testalias",
        number_of_shards = 1,
        number_of_replicas = 0,
        printLog = true,
        alias = true,
        aliasIndex = {"testalias-01","testalias-02","testalias-03"},
        writeIndex = "testalias-02")
public class TestAlias {


}

如果需要频繁的修改、删除操作,则使用Alias比较麻烦,因为只能配置一个当前能够写入的索引,如果需要写入其他索引则需要调用switchAliasWriteIndex方法来切换当前能够写入的索引

/**
* 切换Alias写入index
* @param clazz
* @throws Exception
*/
public void switchAliasWriteIndex(Class<T> clazz,String writeIndex) throws Exception;
rollover滚动索引操作

当你需要根据一些索引滚动生成策略自动生成新的索引并通过alias统一操作这些索引,那么请按照如下方式配置你的pojo

  • @ESMetaData注解中配置rollovertrue
  • rolloverMaxIndexAgeCondition当前索引超过此项配置的时间后生成新的索引
  • rolloverMaxIndexAgeTimeUnit与rolloverMaxIndexAgeCondition联合使用,对应rolloverMaxIndexAgeCondition的单位
  • rolloverMaxIndexDocsCondition当前索引文档数量超过此项配置的数字后生成新的索引
  • rolloverMaxIndexSizeCondition当前索引大小超过此项配置的数字后生成新的索引
  • rolloverMaxIndexSizeByteSizeUnit与rolloverMaxIndexSizeCondition联合使用,对应rolloverMaxIndexSizeCondition的单位
  • 自动生成索引的名称是indexName-yyyy-mm-dd-00000n
  • @ESMetaData中配置的indexName其实是alias名字

例如下面的代码,别名为testrollover2,当索引个数超过2个时则自动生成一个新的索引,索引的名称为testrollover2-当前日期-000001

@ESMetaData(indexName = "testrollover2",
        number_of_shards = 1,
        number_of_replicas = 0,
        printLog = true,
        rollover = true,
        rolloverMaxIndexDocsCondition = 2)
public class TestRollover {

建议对于rollover方式的操作,不要发生修改(相同ID的保存),删除操作,只有新增、查询的操作,因为当前可写索引只能是最新的那个索引,有可能导致修改、删除的数据不存在而发生各种不符合预期的情况

如果需要定制执行rollover自动执行的策略,需要按照如下方式配置,但请注意,这种方式对于分布式集群的场景并不是一个很好的选择,可能会导致多个rollover任务同时运行

  • @ESMetaData注解中配置autoRollovertrue,这项打开后保存索引数据后不会自动运行rollover
  • autoRolloverInitialDelay项目启动后延迟autoRolloverInitialDelay时间后开始执行,
  • autoRolloverPeriod 项目启动后每间隔autoRolloverPeriod执行一次
  • autoRolloverPeriod项目启动后每间隔autoRolloverPeriod执行一次
  • 默认按照每4小时运行一次
自定义settings

请在构建路径下(例如resources目录)新增文件${indexName}.essettings,例如索引的名称为pinyin则创建一个名为pinyin.essettings的文件,文件中保存自定义settings的配置内容,例如(这里是一个拼音分词器的设置,对于自定义分词器的支持见下一小节):

规则:每一行为一对配置,以:为分隔符,前半部分为key,后半部分为value,key可以有多级,用.分隔即可

analysis.analyzer.pinyin_analyzer.tokenizer:my_pinyin
analysis.tokenizer.my_pinyin.type:pinyin
analysis.tokenizer.my_pinyin.keep_separate_first_letter:false
analysis.tokenizer.my_pinyin.keep_full_pinyin:true
analysis.tokenizer.my_pinyin.keep_original:true
analysis.tokenizer.my_pinyin.limit_first_letter_length:16
analysis.tokenizer.my_pinyin.lowercase:true
analysis.tokenizer.my_pinyin.remove_duplicated_term:true

如果在构建目录下创建了这样的文件,则会自动匹配并读取配置文件的内容,在首次创建索引时携带对应配置进行索引创建

当需要自定义settings配置文件位置时,可以通过@ESMetaData注解进行设定,如下所示:

@ESMetaData(indexName = "pinyin", number_of_shards = 1,number_of_replicas = 0,printLog = true,settingsPath = "st/pinyin.essettings")
自定义分词器

自定义分词器需要结合自定义settings一起使用

先安装pinyin分词器(注意按照时插件版本需要与es版本相对应)

elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-pinyin/releases/download/v7.15.2/elasticsearch-analysis-pinyin-7.15.2.zip

利用自定义settings机制将索引settings配置好

analysis.analyzer.pinyin_analyzer.tokenizer:my_pinyin
analysis.tokenizer.my_pinyin.type:pinyin
analysis.tokenizer.my_pinyin.keep_separate_first_letter:false
analysis.tokenizer.my_pinyin.keep_full_pinyin:true
analysis.tokenizer.my_pinyin.keep_original:true
analysis.tokenizer.my_pinyin.limit_first_letter_length:16
analysis.tokenizer.my_pinyin.lowercase:true
analysis.tokenizer.my_pinyin.remove_duplicated_term:true

索引实体类如下:(pinyin_analyzer是提前设定在settings中的)

@ESMetaData(indexName = "pinyin", number_of_shards = 1,number_of_replicas = 0,printLog = true,settingsPath = "st/pinyin.essettings")
@Data
public class Pinyin {
    @ESID
    private String uid;

    @ESMapping(datatype = DataType.text_type,custom_analyzer = "pinyin_analyzer")
    private String name;
}

测试详细代码见(esclientrhlDemo)

@Autowired
ElasticsearchTemplate<Pinyin, String> elasticsearchTemplate;

/**
* 测试保存一条数据
*
* @throws Exception
*/
@Test
public void testPinyin() throws Exception {
    Pinyin p1 = new Pinyin();
    p1.setUid("1");
    p1.setName("张三丰");
    elasticsearchTemplate.save(p1);
    Pinyin p2 = new Pinyin();
    p2.setUid("2");
    p2.setName("张无忌");
    elasticsearchTemplate.save(p2);
    Thread.sleep(2000L);
    QueryBuilder qb = QueryBuilders.termQuery("name", "zhang");
    elasticsearchTemplate.search(qb, Pinyin.class).forEach(s -> System.out.println(s));
}
normalizer

normalizer 用法和自定义分词类似

定义settings

analysis.normalizer.lowercase.type:custom
analysis.normalizer.lowercase.filter:lowercase

定义索引实体类

@ESMetaData(indexName = "normalizer", number_of_shards = 1,number_of_replicas = 0,printLog = true,maxResultWindow = 29999)
public class Normalizer {
    @ESID
    private String uid;

    @ESMapping(datatype = DataType.keyword_type,normalizer = "lowercase")
    private String name;
}

测试

@Autowired
ElasticsearchTemplate<Normalizer, String> elasticsearchTemplate;

/**
* 测试保存一条数据
*
* @throws Exception
*/
@Test
public void testNormalizer() throws Exception {
    Normalizer n1 = new Normalizer();
    n1.setName("apple");
    n1.setUid("1");
    Normalizer n2 = new Normalizer();
    n2.setName("Apple");
    n2.setUid("1");
    elasticsearchTemplate.save(n1);
    Thread.sleep(2000);
    QueryBuilder qb = QueryBuilders.termQuery("name", "aPple");
    elasticsearchTemplate.search(qb, Normalizer.class).forEach(s -> System.out.println(s));
}

CRUD功能说明

LowLevelClient查询

这种情况通常适用于直接发JSON报文查询或操作es服务端,本方法并没有做太多的封装,基本保留了原生的出入参

//自动注入工具类
@Autowired
ElasticsearchTemplate elasticsearchTemplate;
//执行查询
Request request = new Request("GET","/esdemo/_search");
request.setEntity(new NStringEntity("{\"query\":{\"match_all\":{\"boost\":1.0}}}",ContentType.APPLICATION_JSON));
Response response = elasticsearchTemplate.request(request);
RequestLine requestLine = response.getRequestLine();
HttpHost host = response.getHost();
int statusCode = response.getStatusLine().getStatusCode();
Header[] headers = response.getHeaders();
String responseBody = EntityUtils.toString(response.getEntity());
System.out.println(responseBody);
新增索引数据

如无特殊说明下面查询都默认注入了工具类,工具类第一泛型是要操作的es索引结构的类,第二泛型是索引对应主键的类

@Autowired
ElasticsearchTemplate<Main2,String> elasticsearchTemplate;

Main2类型的主键是String

@ESMetaData(indexName = "index", number_of_shards = 5,number_of_replicas = 0)
public class Main2 implements Serializable {
    private static final long serialVersionUID = 1L;
    @ESID
    private String proposal_no;
Main2 main = new Main2();
main.setProposal_no("main2");
main.setAppli_code("123");
main.setAppli_name("456");
elasticsearchTemplate.save(main);

可以定制routing路由字段来指定数据被索引到哪个分片上

Main2 main2 = new Main2();
main2.setProposal_no("qq360");
main2.setAppli_name("zzxxpp");
elasticsearchTemplate.save(main2, "R01");
批量新增索引数据
List<Main2> list = new ArrayList<>();
Main2 main1 = new Main2();
main1.setProposal_no("main1");
main1.setAppli_code("123");
main1.setAppli_name("456");
Main2 main2 = new Main2();
main2.setProposal_no("main2");
main2.setAppli_code("123");
main2.setAppli_name("456");
Main2 main3 = new Main2();
main3.setProposal_no("main3");
main3.setAppli_code("123");
main3.setAppli_name("456");
list.add(main1);
list.add(main2);
list.add(main3);
elasticsearchTemplate.save(list);
分批次新增索引数据

相比于批量新增索引数据,分批次新增索引数据考虑了es服务端批量索引数据的内存瓶颈,将根据一些简单的策略对传入的数据列表进行拆分并顺序索引

您可以修改org.zxp.esclientrhl.util.Constant配置类中的如下变量,结合最佳实践,默认以5000条为一批

 //批量更新(新增)每批次条数
public static int BULK_COUNT = 5000;

分批次新增索引数据提供了一个新的方法:

Main2 main1 = new Main2();
main1.setProposal_no("aaa");
main1.setBusiness_nature_name("aaaaaa2");
Main2 main2 = new Main2();
main2.setProposal_no("bbb");
main2.setBusiness_nature_name("aaaaaa2");
Main2 main3 = new Main2();
main3.setProposal_no("ccc");
main3.setBusiness_nature_name("aaaaaa2");
Main2 main4 = new Main2();
main4.setProposal_no("ddd");
main4.setBusiness_nature_name("aaaaaa2");
elasticsearchTemplate.saveBatch(Arrays.asList(main1,main2,main3,main4));
部分更新索引数据
Main2 main1 = new Main2();
main1.setProposal_no("main1");
main1.setInsured_code("123");
elasticsearchTemplate.update(main1);
覆盖更新索引数据
Main2 main1 = new Main2();
main1.setProposal_no("main1");
main1.setInsured_code("123");
elasticsearchTemplate.updateCover(main1);

部分更新相比于覆盖更新的区别是,部分更新只会更新set了的字段值

批量更新索引
/**
* 根据queryBuilder所查结果,按照有值字段更新索引
*
* @param queryBuilder
* @param t   满足queryBuilder查询出条件的结果集更新为t的有值字段值
* @param clazz
* @param limitcount 更新字段不能超出limitcount
* @param asyn true异步处理  否则同步处理
* @return
* @throws Exception
*/
public BulkResponse batchUpdate(QueryBuilder queryBuilder, T t, Class clazz, int limitcount, boolean asyn) throws Exception;
//将appli_name是123的结果集每条数据的sum_amount更新为1000,异步更新,更新条数不得超过30条
Main2 main1 = new Main2();
main1.setSum_amount(1000);
elasticsearchTemplate.batchUpdate(QueryBuilders.matchQuery("appli_name","123"),main1,Main2.class,30, true);

批量更新索引不支持覆盖更新

分批次批量更新索引

调整分批次策略详见“分批次新增索引数据”章节的内容

Main2 main1 = new Main2();
main1.setProposal_no("aaa");
main1.setBusiness_nature_name("aaaaaa2");
Main2 main2 = new Main2();
main2.setProposal_no("bbb");
main2.setBusiness_nature_name("aaaaaa2");
Main2 main3 = new Main2();
main3.setProposal_no("ccc");
main3.setBusiness_nature_name("aaaaaa2");
Main2 main4 = new Main2();
main4.setProposal_no("ddd");
main4.setBusiness_nature_name("aaaaaa2");
elasticsearchTemplate.bulkUpdateBatch(Arrays.asList(main1,main2,main3,main4));
删除索引数据
//通过对象删除,ID必须有值
Main2 main1 = new Main2();
main1.setProposal_no("main1");
main1.setInsured_code("123");
elasticsearchTemplate.delete(main1);
//通过ID删除
elasticsearchTemplate.deleteById("main1",Main2.class);

定制routing路由信息删除

//只有routing信息正确时才能成功删除
elasticsearchTemplate.delete(main2,"R02");
//不管索引数据是否指定了routing都能删除
elasticsearchTemplate.delete(main2);
根据查询条件删除索引数据
elasticsearchTemplate.deleteByCondition(QueryBuilders.matchQuery("appli_name","2"),Main5.class);
判断索引数据是否存在
Main2 main1 = new Main2();
main1.setProposal_no("main1");
main1.setInsured_code("123");
boolean exists = elasticsearchTemplate.exists("main1",Main2.class);
System.out.println(exists);
原生查询

searchRequest是官方原生查询输入,此方法在工具无法满足需求时使用

SearchRequest searchRequest = new SearchRequest(new String[]{"index"});
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(new MatchAllQueryBuilder());
searchSourceBuilder.from(0);
searchSourceBuilder.size(10);
searchRequest.source(searchSourceBuilder);
SearchResponse searchResponse = elasticsearchTemplate.search(searchRequest);

SearchHits hits = searchResponse.getHits();
SearchHit[] searchHits = hits.getHits();
for (SearchHit hit : searchHits) {
    Main2 t = JsonUtils.string2Obj(hit.getSourceAsString(), Main2.class);
    System.out.println(t);
}
支持uri query string的查询

以uri+参数的方式(query string)查询并返回结果 api用法参考官方文档: https://www.elastic.co/guide/en/elasticsearch/reference/7.0/search-uri-request.html

//"q=aaa"查询字段中包含aaa匹配的结果
List<Main2> list = elasticsearchTemplate.searchUri("q=aaa",Main2.class);
//"q=sum_premium:100"查询sum_premium为100的结果
List<Main2> list = elasticsearchTemplate.searchUri("q=sum_premium:100",Main2.class);

注意:部分高级uri查询功能(如范围查询)可能会不可用

支持sql查询

将sql(支持mysql语法)语句传入方法并以各种形式(方法返回为文本)返回的的查询方法 值得注意的是该方法不支持自动识别索引,需要将from后的索引名称定义正确(区分大小写) 另外该方法亦不支持自动泛型转化

//全查询
String result = elasticsearchTemplate.queryBySQL("SELECT * FROM index ORDER BY sum_premium DESC LIMIT 5", SqlFormat.TXT);
//查询count
String result = elasticsearchTemplate.queryBySQL("SELECT count(*) FROM index ", SqlFormat.TXT);
//分组查询
String result = elasticsearchTemplate.queryBySQL("SELECT risk_code,sum(sum_premium) FROM index group by risk_code", SqlFormat.TXT);

该方法第二个参数是返回结果的枚举类型,类型列表详见下文:

CSV("csv","text/csv"),
JSON("json","application/json"),
TSV("tsv","text/tab-separated-values"),
TXT("txt","text/plain"),
YAML("yaml","application/yaml"),
CBOR("cbor","application/cbor"),
SMILE("smile","application/smile");
支持自动反序列化sql查询
# 无参
List<IndexDemo> indexDemos = elasticsearchTemplate.queryBySQL("select * from index_demo where (appli_code = 123 and appli_name = 2) or (appli_code = 123 and appli_name = 5)", IndexDemo.class);
indexDemos.forEach(System.out::println);
# 动态参数
String sql = "select * from index_demo where (appli_code = #{a} and appli_name = #{b}) or (appli_code = #{c} and appli_name = #{d})";
Map<String,String> map = new HashMap<>();
map.put("a","1");
map.put("b","2");
map.put("c","3");
map.put("d","4");
System.out.println(renderString(sql,map));

public static String renderString(String content, Map<String,String> map) {
    Set<Map.Entry<String, String>> entries = map.entrySet();
    for (Map.Entry<String, String> e : map.entrySet()) {
        String regex = "\\#\\{" + e.getKey() + "\\}";
        Pattern pattern = Pattern.compile(regex);
        Matcher matcher = pattern.matcher(content);
        content = matcher.replaceAll(e.getValue());
    }
    return content;
}
支持查询条件的定制查询
/**
 * 非分页查询
 * 目前暂时传入类类型
 * @param queryBuilder 查询条件
 * @param clazz 泛型对应类类型
 * @return 泛型定义好的es索引结构实体类查询结果集合
 * @throws Exception
 */
public List<T> search(QueryBuilder queryBuilder, Class<T> clazz) throws Exception;
//这里简单通过matchall(全查询)的方式进行演示
//QueryBuilder的用法会在单独章节介绍
List<Main2> main2List = elasticsearchTemplate.search(new MatchAllQueryBuilder(),Main2.class);
main2List.forEach(main2 -> System.out.println(main2));
支持查询条件+最大返回条数的定制查询
/**
* 非分页查询,指定最大返回条数
* 目前暂时传入类类型
* @param queryBuilder
* @param limitSize 最大返回条数
* @param clazz
* @return
* @throws Exception
*/
public List<T> searchMore(QueryBuilder queryBuilder,int limitSize, Class<T> clazz) throws Exception;
//最多返回7条数据
List<Main2> main2List = elasticsearchTemplate.searchMore(new MatchAllQueryBuilder(),7,Main2.class);
System.out.println(main2List.size());
main2List.forEach(main2 -> System.out.println(main2));

代理接口用法:

//最多返回6条数据
List<Main2> ll = main2Repository.searchMore(new MatchAllQueryBuilder(), 6);
System.out.println(ll.size());
ll.forEach(s -> System.out.println(s));
支持分页、高亮、排序、查询条件的定制查询
/**
 * 支持分页、高亮、排序的查询
 * @param queryBuilder 查询条件
 * @param pageSortHighLight 封装了分页、排序、高亮的规格信息
 * @param clazz 泛型对应类类型
 * @return 泛型定义好的es索引结构实体类查询结果集合
 * @throws Exception
 */
public PageList<T> search(QueryBuilder queryBuilder, PageSortHighLight pageSortHighLight, Class<T> clazz) throws Exception;
//定制分页信息
int currentPage = 1;
int pageSize = 10;
//分页
PageSortHighLight psh = new PageSortHighLight(currentPage,pageSize);
//排序字段,注意如果proposal_no是text类型会默认带有keyword性质,需要拼接.keyword
String sorter = "proposal_no.keyword";
Sort.Order order = new Sort.Order(SortOrder.ASC,sorter);
psh.setSort(new Sort(order));
//定制高亮,如果定制了高亮,返回结果会自动替换字段值为高亮内容
psh.setHighLight(new HighLight().field("risk_code"));
//可以单独定义高亮的格式
//new HighLight().setPreTag("<em>");
//new HighLight().setPostTag("</em>");
PageList<Main2> pageList = new PageList<>();
pageList = elasticsearchTemplate.search(new MatchAllQueryBuilder(), psh, Main2.class);
pageList.getList().forEach(main2 -> System.out.println(main2));
高级查询

高级查询除了包含分页、排序、高亮的定制查询,还支持指定返回结果字段的定制,以及路由查询的指定等

在高级查询中设置分页、排序、高亮信息

PageSortHighLight psh = new PageSortHighLight(1, 50);
Attach attach = new Attach();
attach.setPageSortHighLight(psh);
elasticsearchTemplate.search(QueryBuilders.termQuery("proposal_no", "qq360"), attach, Main2.class)
.getList().forEach(s -> System.out.println(s));

指定返回字段

Attach attach = new Attach();
//返回结果只包含proposal_no字段
String[] includes = {"proposal_no"};
attach.setIncludes(includes);
elasticsearchTemplate.search(QueryBuilders.termQuery("proposal_no", "qq360"), attach, Main2.class);

还可以定制以下返回策略

//除了business_nature_name字段其余的返回
String[] excludes = {"business_nature_name"};
//返回以risk开头的字段
String[] includes = {"risk*"};
Attach attach = new Attach();
attach.setIncludes(includes);
attach.setExcludes(includes);
elasticsearchTemplate.search(QueryBuilders.termQuery("proposal_no", "qq360"), attach, Main2.class);

指定路由名称进行查询

//索引数据时也必须索引到routing为R10的分片中才能查到
Attach attach = new Attach();
attach.setRouting("R01");
elasticsearchTemplate.search(QueryBuilders.termQuery("proposal_no", "qq360"), attach, Main2.class)
.getList().forEach(s -> System.out.println(s));

trackTotalHits支持 如果匹配数大于10,000,则不会计算hits.total。 这是为了避免为给定查询计算精确匹配文档的不必要开销。 我们可以通过将track_total_hits = true作为请求参数来强制进行精确匹配的计算 https://www.elastic.co/guide/en/elasticsearch/reference/7.8/search-your-data.html#track-total-hits

Attach attach = new Attach();
attach.setTrackTotalHits(true);
elasticsearchTemplate.search(QueryBuilders.termQuery("proposal_no", "qq360"), attach, Main2.class)
.getList().forEach(s -> System.out.println(s));

search after查询

search after主要解决了elasticsearch深分页(deep paging)的问题,但只能从第一页一页一页向后翻 https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-body.html#request-body-search-search-after

Attach attach = new Attach();
//【必须】设置searchAfter模式
attach.setSearchAfter(true);
//【非必须】设置分页信息(如果不设置,默认一页10条数据)
PageSortHighLight pageSortHighLight = new PageSortHighLight(1, 10);
//【必须】设置排序字段
String sorter = "sum_amount";
Sort.Order order = new Sort.Order(SortOrder.ASC,sorter);
pageSortHighLight.setSort(new Sort(order));
attach.setPageSortHighLight(pageSortHighLight);
PageList page = elasticsearchTemplate.search(new MatchAllQueryBuilder(),attach,Main2.class);
//获取第一页数据
page.getList().forEach(s -> System.out.println(s));
Object[] sortValues = page.getSortValues();
//分别获取每页数据
while (true) {
	//必须将前一次获取的sortValues设置正确
    attach.setSortValues(sortValues);
    page = elasticsearchTemplate.search(new MatchAllQueryBuilder(),attach,Main2.class);
    //当没有数据说明已经遍历完成
    if (page.getList() != null && page.getList().size() != 0) {
        page.getList().forEach(s -> System.out.println(s));
        sortValues = page.getSortValues();
    } else {
    	break;
    }
}
count查询

结合查询条件查询结果的数据量

long count = elasticsearchTemplate.count(new MatchAllQueryBuilder(),Main2.class);
System.out.println(count);
scroll查询

为了防止数据量多大导致的内存溢出,将scroll方法拆分为多步执行

/**
* scroll方式查询,创建scroll
* @param queryBuilder
* @param clazz
* @param time
* @param size
* @return
* @throws Exception
*/
public ScrollResponse<T> createScroll(QueryBuilder queryBuilder, Class<T> clazz, Long time, Integer size) throws Exception;

/**
* scroll方式查询,创建scroll
* @param queryBuilder
* @param clazz
* @param time
* @param size
* @param indexs
* @return
* @throws Exception
*/
public ScrollResponse<T> createScroll(QueryBuilder queryBuilder, Class<T> clazz, Long time, Integer size , String... indexs) throws Exception;
//创建scroll并获得第一批数据
ScrollResponse<Main2> scrollResponse = elasticsearchTemplate.createScroll(new MatchAllQueryBuilder(), Main2.class, 1L, 100);
scrollResponse.getList().forEach(s -> System.out.println(s));
String scrollId = scrollResponse.getScrollId();
//通过scrollId获取其他批次的数据
while (true){
    scrollResponse = elasticsearchTemplate.queryScroll(Main2.class, 1L, scrollId);
    if(scrollResponse.getList() != null && scrollResponse.getList().size() != 0){
    scrollResponse.getList().forEach(s -> System.out.println(s));
    scrollId = scrollResponse.getScrollId();
}else{
	break;
}
/**
* 清除scroll快照
* @param scrollId
* @return
* @throws Exception
*/
public ClearScrollResponse clearScroll(String... scrollId) throws Exception;

ClearScrollResponse clearScrollResponse = elasticsearchTemplate.clearScroll(scroll.getScrollId());
        System.out.println(clearScrollResponse.isSucceeded());

以下两种方式为了避免内存溢出已经不建议使用

/**
 * scroll方式查询,用于大数据量查询
 * @param queryBuilder 查询条件
 * @param clazz 类类型
 * @param time 保留小时数
 * @return
 * @throws Exception
 */ 
@Deprecated
public List<T> scroll(QueryBuilder queryBuilder, Class<T> clazz, Long time) throws Exception;

/**
 * scroll方式查询,用于大数据量查询,默认了保留时间为2小时(Constant.DEFAULT_SCROLL_TIME)
 * @param queryBuilder
 * @param clazz
 * @return
 * @throws Exception
 */
@Deprecated
public List<T> scroll(QueryBuilder queryBuilder, Class<T> clazz) throws Exception;
//默认scroll镜像保留2小时
List<Main2> main2List = elasticsearchTemplate.scroll(new MatchAllQueryBuilder(),Main2.class);
main2List.forEach(main2 -> System.out.println(main2));

//指定scroll镜像保留5小时
//List<Main2> main2List = elasticsearchTemplate.scroll(new MatchAllQueryBuilder(),Main2.class,5L);
模版查询-保存模版
/**
* 保存Template
* @param templateName 模版名称
* @param templateSource 模版内容
* @return
*/
public Response saveTemplate(String templateName,String templateSource) throws Exception;

保存一个名称为tempdemo1的模版,模版内容见变量templatesource值

String templatesource = "{\n" +
"  \"script\": {\n" +
"    \"lang\": \"mustache\",\n" +
"    \"source\": {\n" +
"      \"_source\": [\n" +
"        \"proposal_no\",\"appli_name\"\n" +
"      ],\n" +
"      \"size\": 20,\n" +
"      \"query\": {\n" +
"        \"term\": {\n" +
"          \"appli_name\": \"{{name}}\"\n" +
"        }\n" +
"      }\n" +
"    }\n" +
"  }\n" +
"}";
elasticsearchTemplate.saveTemplate("tempdemo1",templatesource);
模版查询-注册模版
/**
* Template方式搜索,Template已经保存在script目录下
* @param template_params 模版参数
* @param templateName 模版名称
* @param clazz
* @return
*/
public List<T> searchTemplate(Map<String, Object> template_params,String templateName,Class<T> clazz) throws Exception;

套用查询上面保存的模版tempdemo1

Map param = new HashMap();
        param.put("name","123");
        elasticsearchTemplate.searchTemplate(param,"tempdemo1",Main2.class).forEach(s -> System.out.println(s));
模版查询-内联模版
/**
* Template方式搜索,Template内容以参数方式传入
* @param template_params 模版参数
* @param templateSource 模版内容
* @param clazz
* @return
*/
public List<T> searchTemplateBySource(Map<String, Object> template_params,String templateSource,Class<T> clazz) throws Exception;

直接传模版内容进行查询

Map param = new HashMap();
param.put("name","123");
String templatesource = "{\n" +
"      \"query\": {\n" +
"        \"term\": {\n" +
"          \"appli_name\": \"{{name}}\"\n" +
"        }\n" +
"      }\n" +
"}";
elasticsearchTemplate.searchTemplateBySource(param,templatesource,Main2.class).forEach(s -> System.out.println(s));
搜索建议Completion Suggester

搜索建议功能能够快速提示要搜索的内容(请参考百度搜索功能),搜索建议字段需要配置suggest属性为true

/**
 * 搜索建议方法
 * @param fieldName 要搜索的字段(需要设置该字段mapping配置suggest属性为true)
 * @param fieldValue 要搜索的内容
 * @param clazz
 * @return 返回搜索结果列表 搜索建议默认条数为10条
 * @throws Exception 
 */
public List<String> completionSuggest(String fieldName,String fieldValue,Class<T> clazz) throws Exception;
List<String> list = elasticsearchTemplate.completionSuggest("appli_name", "1", Main2.class);
list.forEach(main2 -> System.out.println(main2));
@ESMapping(suggest = true)
private String appli_name;
搜索建议phrase suggest
/**
* 搜索建议Phrace Suggester
* @param fieldName
* @param fieldValue
* @param param 定制Phrace Suggester的参数
* @param clazz
* @return
* @throws Exception
*/
public List<String> phraseSuggest(String fieldName, String fieldValue, ElasticsearchTemplateImpl.PhraseSuggestParam param, Class<T> clazz) throws Exception;
ElasticsearchTemplateImpl.PhraseSuggestParam param = new ElasticsearchTemplateImpl.PhraseSuggestParam(5,1,null,"always");
elasticsearchTemplate.phraseSuggest("body", "who is good boy zhangxinpen may be a goop",param, Sugg.class).forEach(s -> System.out.println(s));
//可以使用默认的参数,将param传入null
elasticsearchTemplate.phraseSuggest("body", "who is good boy zhangxinpen may be a goop",null, Sugg.class).forEach(s -> System.out.println(s));

参数如何定义详见官方文档: https://www.elastic.co/guide/en/elasticsearch/reference/7.3/search-suggesters.html

根据ID查询
/**
 * 根据ID查询
 * @param id 主键值,对应第二泛型类型
 * @param clazz
 * @return 
 * @throws Exception
 */
public T getById(M id, Class<T> clazz) throws Exception;
Main2 main2 = elasticsearchTemplate.getById("main2", Main2.class);
System.out.println(main2);
mget查询
/**
 * 根据ID列表批量查询
 * @param ids ID主键数组
 * @param clazz
 * @return 
 * @throws Exception
 */
public List<T> mgetById(M[] ids, Class<T> clazz) throws Exception;
String[] list = {"main2","main3"};
List<Main2> listResult = elasticsearchTemplate.mgetById(list, Main2.class);
listResult.forEach(main -> System.out.println(main));

QueryBuilder常用用法展示

精准查询
//精准查询的字段需要设置keyword属性(默认该属性为true),查询时fieldname需要带上.keyword
QueryBuilder queryBuilder = QueryBuilders.termQuery("appli_name.keyword","456");
List<Main2> list = elasticsearchTemplate.search(queryBuilder,Main2.class);
list.forEach(main2 -> System.out.println(main2));
//如果field类型直接为keyword可以不用加.keyword
短语查询
//中国好男儿
//必须相邻的查询条件
QueryBuilder queryBuilder = QueryBuilders.matchPhraseQuery("appli_name","国好");
相关度查询
//中国好男儿
//slop设置为2,中和男最多能移动两次并完成匹配
QueryBuilder queryBuilder = QueryBuilders.matchPhraseQuery("appli_name","中男").slop(2);
范围查询
QueryBuilder queryBuilder = QueryBuilders.rangeQuery("sum_premium").from(1).to(3);
全文匹配
QueryBuilder queryBuilder = QueryBuilders.matchQuery("appli_name","中男儿");

minimumShouldMatch最少匹配参数

//"中 男 儿 美 丽 人 生"最少匹配词语数量是75%,该查询查不到信息
QueryBuilder queryBuilder = QueryBuilders.matchQuery("appli_name","中 男 儿 美 丽 人 生").minimumShouldMatch("75%");

match查询集成fuzzy纠错查询

QueryBuilder queryBuilder = QueryBuilders.matchQuery("appli_name","spting");
((MatchQueryBuilder) queryBuilder).fuzziness(Fuzziness.AUTO);

match查询设定查询条件逻辑关系

//默认是OR
QueryBuilder queryBuilder = QueryBuilders.matchQuery("appli_name","spring sps").operator(Operator.AND);
fuzzy纠错查询
//原文是spring,查询条件输入为spting也能查询到结果
QueryBuilder queryBuilder = QueryBuilders.fuzzyQuery("appli_name","spting");
boost权重设置
//查询结果appli_name为spring的会被优先展示其次456,再次123
QueryBuilder queryBuilder1 = QueryBuilders.termQuery("appli_name.keyword","spring").boost(5);
QueryBuilder queryBuilder2 = QueryBuilders.termQuery("appli_name.keyword","456").boost(3);
QueryBuilder queryBuilder3 = QueryBuilders.termQuery("appli_name.keyword","123");
BoolQueryBuilder queryBuilder = QueryBuilders.boolQuery();
queryBuilder.should(queryBuilder1).should(queryBuilder2).should(queryBuilder3);
prefix前缀查询
//性能差,扫描整个倒排索引,前缀越短,要处理的doc越多,性能越差,尽可能用长前缀搜索
//查询appli_name字段值前缀为1的内容
QueryBuilder queryBuilder = QueryBuilders.prefixQuery("appli_name","1");
wildcard通配符查询
//性能较差不建议使用
//?:任意字符
//*:0个或任意多个字符
QueryBuilder queryBuilder = QueryBuilders.wildcardQuery("appli_name","1?3");
regexp正则查询
//性能较差不建议使用
QueryBuilder queryBuilder = QueryBuilders.regexpQuery("appli_name","[0-9].+");
//[0-9]:指定范围内的数字
//[a-z]:指定范围内的字母
//.:一个字符
//+:前面的正则表达式可以出现一次或多次
组合逻辑查询

组合逻辑查询是多种查询方式的逻辑组合,共有三种:与must、或should、非mustNot

//select * from Main2 where (appli_name = 'spring' or appli_name = '456') and risk_code = '0101' and proposal_no != '1234567'
QueryBuilder queryBuilder1 = QueryBuilders.termQuery("appli_name.keyword","spring");
QueryBuilder queryBuilder2 = QueryBuilders.termQuery("appli_name.keyword","456");
QueryBuilder queryBuilder3 = QueryBuilders.termQuery("risk_code","0101");
QueryBuilder queryBuilder4 = QueryBuilders.termQuery("proposal_no.keyword","1234567");
BoolQueryBuilder queryBuilder = QueryBuilders.boolQuery();
queryBuilder.should(queryBuilder1).should(queryBuilder2);
queryBuilder.must(queryBuilder3);
queryBuilder.mustNot(queryBuilder4);
Dis Max Query

所有查询条件中只取匹配度最高的那个条件的分数作为最终分数

//假设
//第一条数据title匹配bryant fox的分数为0.8 body匹配bryant fox的分数为0.1,这条数据最终得分为0.8
//第二条数据title匹配bryant fox的分数为0.6 body匹配bryant fox的分数为0.7,这条数据最终得分为0.7
//dis_max查询后第一条数据相关度评分更高,排在第二条数据的前面
//如果不用dis_max,则第二条数据的得分为1.4高于第一条数据的0.9
//如果再附加其他匹配结果的分数,需要指定tieBreaker
//获得最佳匹配语句句的评分_score
//将其他匹配语句句的评分与tie_breaker 相乘
//对以上评分求和并规范化
//Tier Breaker:介于0-1 之间的浮点数(0代表使⽤用最佳匹配;1 代表所有语句句同等重要)
QueryBuilders.disMaxQuery()
.add(QueryBuilders.matchQuery("title", "bryant fox"))
.add(QueryBuilders.matchQuery("body", "bryant fox"))
.tieBreaker(0.2f);
Multi Match Query

最佳匹配best_fields:和Dis Max Query效果一样

QueryBuilders.multiMatchQuery("Quick pets", "title","body")
.minimumShouldMatch("20%")
.type(MultiMatchQueryBuilder.Type.BEST_FIELDS)
.tieBreaker(0.2f);

最多匹配most_fields:能匹配到更多字段的记录优先(不管其中某一个字段有多么匹配)

PUT /mult/_doc/1
{
    "s1": "shanxi shanxi shanxi shanxi shanxi",
    "s2": "shanxi",
    "s3": "ttttt",
    "s4": "Brown rabbits are commonly seen."
}
PUT /mult/_doc/2
{
    "s1": "datong",
    "s2": "datong",
    "s3": "datong",
    "s4": "Brown rabbits are commonly seen."
}
//虽然shanxi在s1中出现了很多次,但是只出现了两个字段s1 s2
//datong出现在了三个字段s123,所以优先更多出现字段的这条记录
//doc2的分数大于doc1的分数
QueryBuilders.multiMatchQuery("shanxi datong", "s1","s2","s3","s4")
.type(MultiMatchQueryBuilder.Type.MOST_FIELDS);

跨字段匹配cross_fields:综合起来最匹配的,即类似将所有字段合并到一个字段中,搜索这个字段看谁分高 最佳实践:可以代替copy_to节省了一个字段的倒排空间

PUT /mult/_doc/3
{
    "s1": "sichuan sichuan",
    "s2": "sichuan",
    "s3": "eee",
    "s4": "sichuan"
}

PUT /mult/_doc/4
{
    "s1": "chengdu t chengdu chengdu",
    "s2": "rr",
    "s3": "ss",
    "s4": "Brown rabbits are commonly seen."
}
//虽然chengdu在s1中出现了3次,但是合在一起显然doc3更匹配(TF更高、文档长度小,IDF一致)
//所以doc3分数更高
QueryBuilders.multiMatchQuery("chengdu sichuan", "s1","s2","s3","s4")
.type(MultiMatchQueryBuilder.Type.CROSS_FIELDS);
Function Score Query

https://www.elastic.co/guide/en/elasticsearch/reference/7.1/query-dsl-function-score-query.html 可以在查询结束后,对每一个匹配的文档进行一系列的重新算分,根据新生成的分数进行排序

//新的算分 = 老的算分 * log( 1 + factor*votes的值)
//相当于和数据中的内容进行加权,不是直接指定加权值,而是指定加权策略,数据中的字段可以直接影响到算分
ScoreFunctionBuilder<?> scoreFunctionBuilder = ScoreFunctionBuilders
.fieldValueFactorFunction("votes")
.modifier(FieldValueFactorFunction.Modifier.LOG1P)
.factor(0.1f);
QueryBuilders.functionScoreQuery(QueryBuilders.matchQuery("title", "bryant fox"),scoreFunctionBuilder)
.boostMode(CombineFunction.MULTIPLY)//默认就是乘
.maxBoost(3f);
boosting Query

https://www.elastic.co/guide/en/elasticsearch/reference/7.1/query-dsl-boosting-query.html boosting查询是定制一组查询策略的方式,它可以定制一个否定查询条件组,并设定这个条件组降低匹配的程度 positive:这个查询返回的信息必须匹配(boostingQuery的第一个参数) negative:这个可以根据negative_boost来决策对搜索结果相关度的调整(boostingQuery的第二个参数) negative_boost:参数boost的含义 ● 当boost > 1 时,打分的相关度相对性提升 ● 当0 < boost < 1 时,打分的权重相对性降低

QueryBuilders.boostingQuery(QueryBuilders.matchQuery("title", "bryant fox"),
QueryBuilders.matchQuery("flag", "123")).negativeBoost(0.2f);

注意与boost进行区分,boosting Query有一套固定的策略

过滤器

过滤器查询需要和布尔查询结合使用,效果上和普通查询没有什么区别

比如下面的例子must和filter的关系是并且

但过滤器查询首先不会计算相关度评分,而普通查询会去计算相关度评分,并且按照相关对进行排序,那么如果你并不需要相关度评分就要优先选择过滤器查询

另外过滤器查询内置了bitset的caching机制,能够非常大程度的提升查询的性能,减少扫描倒排索引的几率,所以在日常开发中,我们需要认真评估,积极使用过滤器查询

//select * from Main2 where appli_name = '456' and risk_code = '0101'
QueryBuilder queryBuilder = QueryBuilders.boolQuery().must(QueryBuilders.termQuery("appli_name.keyword","456"))
//下面如果会比较频繁的作为子集合,就比较适合通过filter来缓存
.filter(QueryBuilders.matchPhraseQuery("risk_code","0101"));
List<Main2> list = elasticsearchTemplate.search(queryBuilder,Main2.class);
list.forEach(main2 -> System.out.println(main2));

更多QueryBuilder详见https://www.elastic.co/guide/en/elasticsearch/client/java-rest/6.6/java-rest-high-query-builders.html

nested查询
NestedQueryBuilder queryBuilder = QueryBuilders.nestedQuery("actors",QueryBuilders.matchQuery("actors.first_name","DiCaprio1"), ScoreMode.Total);
elasticsearchTemplate.search(queryBuilder, MyMovies.class).forEach(s -> {System.out.println(s);});

NestedQueryBuilder需要传入一个nestedPath

NestedQueryBuilder queryBuilder = QueryBuilders.nestedQuery("nestedPath",QueryBuilders.termsQuery("nestedPath.id",1),ScoreMode.Total);
按照多索引查询说明

有两种方式可供多索引查询

  1. 通过配置注解searchIndexNames,这种方式可以在默认能查询多索引的所有api中生效,如果配置此项,再相应的查询方法将会查询多个索引,并按照当前poji的字段结果进行返回,但由于通过注解配置不灵活,所以如果不是特别确定的场景并不建议这么做。
@ESMetaData(indexName = "main5",searchIndexNames = {"main5","index"}, number_of_shards = 5,number_of_replicas = 0,printLog = false)
public class Main5 implements Serializable {

//查询api调用不发生任何变化
  1. 通过api传入需要查询的多个索引名称,这种方式相比注解方式更加灵活可靠,如果涉及跨索引查询的业务推荐使用这种方法,目前已经添加了普通查询对应的多索引入参api,后续将添加聚合查询的跨索引查询
//传入main5、main6作为需要被2个索引范围
List<Main6> list = elasticsearchTemplate.search(QueryBuilders.matchAllQuery(),Main6.class,"main5","main6");
System.out.println(list.size());
//查询结果仅包含main6的字段结果
list.forEach(main6 -> System.out.println(main6));

这是一个新增的接口方法实例,均在最后添加了可变长入参的方式

 /**
     * 非分页查询(跨索引)
     * 目前暂时传入类类型
     * @param queryBuilder
     * @param clazz
     * @return
     * @throws Exception
     */
    public List<T> search(QueryBuilder queryBuilder, Class<T> clazz,String... indexs) throws Exception;

==建议跨索引查询时多索引之间尽量字段重合度高==

ScriptSortBuilder

按照自定义脚本进行排序(例子中是随机排序)

Script script = new Script("Math.random()");
ScriptSortBuilder scriptSortBuilder = SortBuilders.scriptSort(script,ScriptSortBuilder.ScriptSortType.NUMBER).order(SortOrder.DESC);
SearchRequest searchRequest = new SearchRequest(new String[]{"index"});
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(new MatchAllQueryBuilder());
searchSourceBuilder.from(0);
searchSourceBuilder.size(10);
searchSourceBuilder.sort(scriptSortBuilder);
searchRequest.source(searchSourceBuilder);
SearchResponse searchResponse = elasticsearchTemplate2.search(searchRequest);

SearchHits hits = searchResponse.getHits();
SearchHit[] searchHits = hits.getHits();
for (SearchHit hit : searchHits) {
Main2 t = JsonUtils.string2Obj(hit.getSourceAsString(), Main2.class);
System.out.println(t);
}
Geo*QueryBuilder

GeoBoundingBoxQueryBuilder

查询返回topLeft左顶点和bottomRight右底点之间的矩形中的坐标

GeoPoint topLeft = new GeoPoint(32.030249,118.789703);
GeoPoint bottomRight = new GeoPoint(32.024341,118.802171);
GeoBoundingBoxQueryBuilder geoBoundingBoxQueryBuilder =
QueryBuilders.geoBoundingBoxQuery("geo")
.setCorners(topLeft,bottomRight);
List<GeoPojo> search = elasticsearchTemplate.search(geoBoundingBoxQueryBuilder, GeoPojo.class);

GeoDistanceQueryBuilder

查询返回给定经纬度对应范围内的坐标

QueryBuilders.geoDistanceQuery("pin.location")                             
    .point(40, -70)                                          
    .distance(200, DistanceUnit.KILOMETERS);  

GeoPolygonQueryBuilder

查询返回给定经纬度列表自定义区域范围内的坐标

List<GeoPoint> points = new ArrayList<>();           
points.add(new GeoPoint(40, -70));
points.add(new GeoPoint(30, -80));
points.add(new GeoPoint(20, -90));
QueryBuilders.geoPolygonQuery("pin.location", points);

聚合查询

原生聚合查询
/**
 * 聚合基础方法,此方法较少封装,其目的为了满足工具无法实现的聚合查询
 * @param aggregationBuilder 聚合内容
 * @param queryBuilder 检索条件
 * @param clazz 
 * @return 聚合结果(官方原生聚合结果)
 * @throws Exception
 */
public Aggregations aggs(AggregationBuilder aggregationBuilder, QueryBuilder queryBuilder, Class<T> clazz) throws Exception;
SumAggregationBuilder aggregation = AggregationBuilders.sum("agg").field("sum_amount");
Aggregations aggregations = elasticsearchTemplate.aggs(aggregation,null,Main2.class);
Sum agg = aggregations.get("agg");
double value = agg.getValue();
System.out.println(value);

更详细用法请参考官方文档https://www.elastic.co/guide/en/elasticsearch/client/java-api/6.6/_metrics_aggregations.html

官方所有聚合Builder请参考https://www.elastic.co/guide/en/elasticsearch/client/java-rest/6.6/java-rest-high-aggregation-builders.html

普通聚合查询
/**
 * 以aggstypes的方式metric度量,该方法不做分组,直接聚合统计metricName字段的sum、count、avg、min、max
 * @param metricName 需要统计分析的字段
 * @param aggsType sum、count、avg、min、max类型
 * @param queryBuilder 查询条件,如果不需要传入null即可
 * @param clazz
 * @return 返回sum、count、avg、min、max的结果
 * @throws Exception
 */
public double aggs(String metricName, AggsType aggsType, QueryBuilder queryBuilder, Class<T> clazz) throws Exception;
double sum = elasticsearchTemplate.aggs("sum_premium", AggsType.sum,null,Main2.class);
double count = elasticsearchTemplate.aggs("sum_premium", AggsType.count,null,Main2.class);
double avg = elasticsearchTemplate.aggs("sum_premium", AggsType.avg,null,Main2.class);
double min = elasticsearchTemplate.aggs("sum_premium", AggsType.min,null,Main2.class);
//如果翻译成sql:select max(sum_premium) from Main2
double max = elasticsearchTemplate.aggs("sum_premium", AggsType.max,null,Main2.class);


System.out.println("sum===="+sum);
System.out.println("count===="+count);
System.out.println("avg===="+avg);
System.out.println("min===="+min);
System.out.println("max===="+max);
分组普通聚合查询
/**
 * 普通聚合查询,此方法最常用
 * 以bucket分组以aggstypes的方式metric度量
 * @param bucketName 以bucketName字段进行分组,在es中这个是“桶”的概念
 * @param metricName 需要统计分析的字段
 * @param aggsType
 * @param clazz
 * @return
 */
public Map aggs(String metricName, AggsType aggsType,QueryBuilder queryBuilder, Class<T> clazz, String bucketName) throws Exception;
//如果翻译成sql:select appli_name,max(sum_premium) from Main2 group by appli_name
Map map = elasticsearchTemplate.aggs("sum_premium", AggsType.sum,null,Main2.class,"appli_name");
map.forEach((k,v) -> System.out.println(k+"     "+v));

==默认按照聚合结果降序排序==

下钻(2层)聚合查询
/**
 * 下钻聚合查询(无排序默认策略),2次分组,注意目前此方法仅支持2层分组
 * 以bucket分组以aggstypes的方式metric度量
 * @param metricName 需要统计分析的字段
 * @param aggsType 
 * @param queryBuilder 
 * @param clazz
 * @param bucketNames 下钻分组字段
 * @return
 * @throws Exception
 */
public List<Down> aggswith2level(String metricName, AggsType aggsType,QueryBuilder queryBuilder, Class<T> clazz ,String... bucketNames) throws Exception;
//select appli_name,risk_code,sum(sumpremium) from Main2 group by appli_name,risk_code
List<Down> list = elasticsearchTemplate.aggswith2level("sum_premium", AggsType.sum,null,Main2.class,"appli_name","risk_code");
list.forEach(down ->
    {
        System.out.println("1:"+down.getLevel_1_key());
        System.out.println("2:"+down.getLevel_2_key() + "    "+ down.getValue());
    }
);
统计聚合查询
/**
 * 统计聚合metric度量
 * @param metricName 需要统计分析的字段
 * @param queryBuilder
 * @param clazz
 * @return
 * @throws Exception
 */
public Stats statsAggs(String metricName, QueryBuilder queryBuilder, Class<T> clazz) throws Exception;
//此方法可以一次查询便返回针对metricName统计分析的sum、count、avg、min、max指标值
Stats stats = elasticsearchTemplate.statsAggs("sum_premium",null,Main2.class);
System.out.println("max:"+stats.getMax());
System.out.println("min:"+stats.getMin());
System.out.println("sum:"+stats.getSum());
System.out.println("count:"+stats.getCount());
System.out.println("avg:"+stats.getAvg());
分组统计聚合查询
/**
 * 以bucket分组,统计聚合metric度量
 * @param bucketName 以bucketName字段进行分组
 * @param metricName 需要统计分析的字段
 * @param queryBuilder
 * @param clazz
 * @return
 * @throws Exception
 */
public Map<String,Stats> statsAggs(String metricName, QueryBuilder queryBuilder, Class<T> clazz, String bucketName) throws Exception;

和上一个方法相比,这个方法增加了分组的功能

Map<String,Stats> stats = elasticsearchTemplate.statsAggs("sum_premium",null,Main2.class,"risk_code");
stats.forEach((k,v) ->
    {
        System.out.println(k+"    count:"+v.getCount()+" sum:"+v.getSum()+"...");
    }
);
基数查询

https://www.elastic.co/guide/en/elasticsearch/reference/7.4/search-aggregations-metrics-cardinality-aggregation.html

/**
 * 基数查询,即count(distinct)返回一个近似值,并不一定会非常准确
 * @param metricName 需要统计分析的字段
 * @param queryBuilder
 * @param clazz
 * @return
 * @throws Exception
 */
public long cardinality(String metricName, QueryBuilder queryBuilder, Class<T> clazz) throws Exception;

/**
    * 基数查询,请结合 https://gitee.com/zxporz/ESClientRHL/wikis/Elasticsearch-ESClientRHL 使用
    * @param metricName 度量字段名称
    * @param queryBuilder 查询条件
    * @param precisionThreshold 设置precisionThreshold,默认3000最大40000
    * @param clazz 索引pojo类类型
    * @return
    * @throws Exception
*/
public long cardinality(String metricName, QueryBuilder queryBuilder, long precisionThreshold, Class<T> clazz) throws Exception;
//select count(distinct proposal_no) from Main2
long value = elasticsearchTemplate.cardinality("proposal_no",null,Main2.class);
System.out.println(value);
等同于
long value = elasticsearchTemplate.cardinality("proposal_no",null,3000L,Main2.class);
百分比聚合查询
/**
 * 百分比聚合 默认按照50%,95%,99%(TP50 TP95 TP99)进行聚合
 * @param metricName 需要统计分析的字段,需要是数字类型
 * @param queryBuilder
 * @param clazz
 * @return
 * @throws Exception
 */
public Map percentilesAggs(String metricName, QueryBuilder queryBuilder, Class<T> clazz) throws Exception;

/**
 * 以百分比聚合 自定义百分比段位
 * @param metricName 需要统计分析的字段,需要是数字类型
 * @param queryBuilder
 * @param clazz
 * @param customSegment 自定义的百分比段位
 * @return
 * @throws Exception
 */
public Map percentilesAggs(String metricName, QueryBuilder queryBuilder, Class<T> clazz,double... customSegment) throws Exception;

百分比聚合即查询统计字段50%的数据在什么值以内,95%的数据在什么值以内

//下面的例子是取sum_premium这个字段的TP50 TP95 TP99
Map map = elasticsearchTemplate.percentilesAggs("sum_premium",null,Main2.class);
map.forEach((k,v) ->
        {
            System.out.println(k+"     "+v);
        }
);
//输出结果是:
50.0     3.5
95.0     6.0
99.0     6.0
//即50%的sum_premium在3.5以下
//即95%的sum_premium在6.0以下
//即99%的sum_premium在6.0以下

//也可以自定义百分比段位
Map map = elasticsearchTemplate.percentilesAggs("sum_premium",null,Main2.class,10,20,30,50,60,90,99);
百分等级聚合查询
/**
 * 以百分等级聚合 (统计在多少数值之内占比多少)
 * @param metricName 需要统计分析的字段,需要是数字类型
 * @param queryBuilder
 * @param clazz
 * @param customSegment
 * @return
 * @throws Exception
 */
public Map percentileRanksAggs(String metricName, QueryBuilder queryBuilder, Class<T> clazz,double... customSegment) throws Exception;

百分等级聚合即给定一个统计结果的段位,并查询在段位范围内出现的百分比是多少

//我们给定一个sum_premium字段的统计段位1,4,5,9,即1以下、4以下、5以下、9以下
//最终获取在上述范围内数据出现的比百分
Map map = elasticsearchTemplate.percentileRanksAggs("sum_premium",null,Main2.class,1,4,5,9);
map.forEach((k,v) ->
        {
            System.out.println(k+"     "+v);
        }
);

//输出结果为:
8.333333333333332      1.0
58.333333333333336     4.0
75.0                   5.0
100.0                  9.0
//即8.3%的数据sum_premium字段值在1以下
//即58.3%的数据sum_premium字段值在4以下
//即75%的数据sum_premium字段值在5以下
//即100%的数据sum_premium字段值在9以下
过滤器聚合查询
/**
 * 过滤器聚合,可以“变”的分组
 * @param metricName 需要统计分析的字段
 * @param aggsType 统计类型
 * @param clazz
 * @param queryBuilder
 * @param filters FiltersAggregator过滤器封装对象,每个过滤器查询出的数据结果都可以作为一个桶
 * @return
 * @throws Exception
 */
public Map filterAggs(String metricName, AggsType aggsType, QueryBuilder queryBuilder,Class<T> clazz, FiltersAggregator.KeyedFilter... filters) throws Exception;

过滤器聚合让es的聚合功能非常的灵活,它可以灵活定制分组规格

//以下的例子是以risk_code是0101为1组,risk_code是0103或0104为1组,求sum_premium在分组内的和
Map map = elasticsearchTemplate.filterAggs("sum_premium", AggsType.sum, null,Main2.class,
        new FiltersAggregator.KeyedFilter("0101", QueryBuilders.matchPhraseQuery("risk_code", "0101")),
        new FiltersAggregator.KeyedFilter("0103或104", QueryBuilders.matchQuery("risk_code", "0103 0104")));
map.forEach((k, v) ->
    System.out.println(k + "    " + v)
);
直方图聚合查询
/**
 * 直方图聚合
 * @param metricName 需要统计分析的字段
 * @param aggsType 统计类型
 * @param queryBuilder
 * @param clazz
 * @param bucketName 以bucketName字段进行分组
 * @param interval 分组字段值的间隔
 * @return
 * @throws Exception
 */
public Map histogramAggs(String metricName,  AggsType aggsType,QueryBuilder queryBuilder,Class<T> clazz,String bucketName,double interval) throws Exception;

直方图聚合是统计针对分组字段,每隔X的值统计一次度量值

//统计sum_premium的数值每3的倍数,统计一次proposal_no的个数
Map map = elasticsearchTemplate.histogramAggs("proposal_no", AggsType.count, null,Main2.class,"sum_premium",3);
map.forEach((k, v) ->
        System.out.println(k + "    " + v)
);
//输出结果为:
0.0    2
3.0    3
6.0    1
日期直方图聚合查询
/**
 * 日期直方图聚合
 * @param metricName 需要统计分析的字段
 * @param aggsType 统计类型
 * @param queryBuilder
 * @param clazz
 * @param bucketName
 * @param interval 日期分组间隔
 * @return
 * @throws Exception
 */
public Map dateHistogramAggs(String metricName, AggsType aggsType, QueryBuilder queryBuilder, Class<T> clazz, String bucketName, DateHistogramInterval interval) throws Exception;

日期直方图与直方图类似,只是将分组的字段替换为日期类型

//统计input_date每两个小时sum_premium的金额总合
Map map = elasticsearchTemplate.dateHistogramAggs("sum_premium", AggsType.sum, null,Main2.class,"input_date", DateHistogramInterval.hours(2));
map.forEach((k, v) ->
        System.out.println(k + "    " + v)
);
更多聚合查询的方式

es支持的聚合方式远不止于此,工具只是针对最常用的一部分查询方式进行封装,以减轻代码量

例如我们需要实现一个范围聚合,可以通过以下例子实现:

//以sum_premium的范围分组,并统计sum_premium的数量
AggregationBuilder aggregation = AggregationBuilders.range("range").field("sum_premium").addUnboundedTo(1).addRange(1,4).addRange(4,100).addUnboundedFrom(100);
aggregation.subAggregation(AggregationBuilders.count("agg").field("proposal_no.keyword"));
Aggregations aggregations = elasticsearchTemplate.aggs(aggregation,null,Main2.class);
Range range = aggregations.get("range");
for (Range.Bucket entry : range.getBuckets()) {
    ValueCount count = entry.getAggregations().get("agg");
    long value = count.getValue();
    System.out.println(entry.getKey() + "    " + value);
}

更多聚合API用法详见https://www.elastic.co/guide/en/elasticsearch/client/java-rest/6.6/java-rest-high-aggregation-builders.html

运维功能

打印请求es服务日志

如果需要调试,需要获取请求es的json报文,可以配置es索引结构实体类注解的打印报文开关printLog = true

@ESMetaData(indexName = "index", number_of_shards = 5,number_of_replicas = 0,printLog = true)
public class Main2 implements Serializable {

此项配置默认为关闭,开启后仅仅支持几个常用功能的日志打印,如果需要支持更多的功能打印,请在相应位置添加如下代码即可

if(metaData.isPrintLog()){
    logger.info(searchSourceBuilder.toString());
}
打印自动注册的情况

如果需要确认自动注册的情况(包括:需要自动创建索引结构的信息以及自动生成ESCRepository代理类的信息)可以配置EnableESTools注解printregmsg属性为true

@EnableESTools(entityPath = {printregmsg = true)

测试demo包(附件testdemo.zip)说明

请构建一个springboot程序,并引入esclientrhl,配置好es服务即可做相关测试demo的调用

  • TestAggs是测试聚合相关的方法
  • TestCRUD是测试索引数据增删改查的相关方法
  • TestIndex是测试创建删除索引的相关方法
  • TestLowLevelClient是测试LowLevelClient的方法 方法上我没写注释,请大家对照readme

特别感谢

特别感谢JetBrains公司提供的IDEA产品

特别感谢项目的热心参与者:jangojingtongxuefang 欢迎大家积极参与Elasticsearch-ESClientRHL

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: You must give any other recipients of the Work or Derivative Works a copy of this License; and You must cause any modified files to carry prominent notices stating that You changed the files; and You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "{}" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright 2017 zxpdt@163.com Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

简介

EsClientRHL是一个可基于springboot的elasticsearch 客户端调用封装工具,通过elasticsearch官网推荐的RestHighLevelClient实现,内置了es索引结构工具、es索引数据增删改工具、es查询工具、es数据分析工具或者es用法脚手架,能够轻松集成并非常方便的使用。 展开 收起
Java
Apache-2.0
取消

发行版

暂无发行版

贡献者 (5)

全部

近期动态

不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化