加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
UI_main.py 15.91 KB
一键复制 编辑 原始数据 按行查看 历史
cungudafa 提交于 2020-08-08 09:50 . sign
# -*- coding: utf-8 -*-
import wx
import wx.xrc
import os
import time
from cv2 import cv2
import _thread
from sklearn.externals import joblib
from pose_hand import getImgInfo
from pose.coco import general_coco_model
from pose.hand import general_hand_model
from yolo import YOLO
from getKeyFrame import rel_change,smooth
from getKeyFrame import Frame
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import argrelextrema # 极值点
from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas
from matplotlib.figure import Figure
###########################################################################
# Class MyFrame1
###########################################################################
root_path = 'D:/myworkspace/JupyterNotebook/hand-keras-yolo3-recognize/'
#COVER = 'docs/ui/camera.png'
DEMO = 'docs/ui/demo.jpg'
ICO = 'docs/ui/favicon.ico'
App_title = 'Sign language detection system by cungudafa'
class MyFrame1 (wx.Frame):
def __init__(self, parent):
wx.Frame.__init__(self, parent, id=wx.ID_ANY, title=App_title, pos=wx.DefaultPosition, size=wx.Size(
913, 641), style=wx.DEFAULT_FRAME_STYLE | wx.TAB_TRAVERSAL)
self.SetSizeHints(wx.DefaultSize, wx.DefaultSize)
self.SetBackgroundColour(
wx.SystemSettings.GetColour(wx.SYS_COLOUR_INACTIVECAPTION))
bSizer1 = wx.BoxSizer(wx.HORIZONTAL)
bSizer2 = wx.BoxSizer(wx.HORIZONTAL)
bSizer3 = wx.BoxSizer(wx.VERTICAL)
sbSizer1 = wx.StaticBoxSizer(wx.StaticBox(
self, wx.ID_ANY, u"原始图像"), wx.VERTICAL)
self.orgin_img = wx.StaticBitmap(sbSizer1.GetStaticBox(
), wx.ID_ANY, wx.NullBitmap, wx.DefaultPosition, wx.DefaultSize, 0)
sbSizer1.Add(self.orgin_img, 1, wx.ALL | wx.EXPAND, 5)
bSizer3.Add(sbSizer1, 1, wx.EXPAND, 5)
sbSizer2 = wx.StaticBoxSizer(wx.StaticBox(
self, wx.ID_ANY, u"人姿和手部检测"), wx.VERTICAL)
self.result_img = wx.StaticBitmap(sbSizer2.GetStaticBox(
), wx.ID_ANY, wx.NullBitmap, wx.DefaultPosition, wx.DefaultSize, 0)
sbSizer2.Add(self.result_img, 1, wx.ALL | wx.EXPAND, 5)
bSizer3.Add(sbSizer2, 1, wx.EXPAND, 5)
bSizer2.Add(bSizer3, 1, wx.EXPAND, 5)
bSizer4 = wx.BoxSizer(wx.VERTICAL)
sbSizer3 = wx.StaticBoxSizer(wx.StaticBox(
self, wx.ID_ANY, u"运行日志"), wx.VERTICAL)
self.tips = wx.TextCtrl(sbSizer3.GetStaticBox(), wx.ID_ANY, wx.EmptyString,
wx.DefaultPosition, wx.DefaultSize, wx.TE_MULTILINE | wx.TE_READONLY)
sbSizer3.Add(self.tips, 1, wx.ALL | wx.EXPAND, 5)
bSizer4.Add(sbSizer3, 1, wx.EXPAND, 5)
sbSizer4 = wx.StaticBoxSizer(wx.StaticBox(
self, wx.ID_ANY, u"检测结果"), wx.VERTICAL)
self.result = wx.TextCtrl(sbSizer4.GetStaticBox(), wx.ID_ANY, wx.EmptyString,
wx.DefaultPosition, wx.DefaultSize, wx.TE_MULTILINE | wx.TE_READONLY)
sbSizer4.Add(self.result, 1, wx.ALL | wx.EXPAND, 5)
bSizer4.Add(sbSizer4, 1, wx.EXPAND, 5)
bSizer2.Add(bSizer4, 1, wx.EXPAND, 5)
bSizer5 = wx.BoxSizer(wx.VERTICAL)
sbSizer5 = wx.StaticBoxSizer(wx.StaticBox(
self, wx.ID_ANY, u"控制台"), wx.VERTICAL)
sbSizer6 = wx.StaticBoxSizer(wx.StaticBox(
sbSizer5.GetStaticBox(), wx.ID_ANY, u"选择视频或文件"), wx.HORIZONTAL)
self.m_button7 = wx.Button(sbSizer6.GetStaticBox(
), wx.ID_ANY, u"选择图片", wx.DefaultPosition, wx.DefaultSize, 0)
sbSizer6.Add(self.m_button7, 1, wx.ALL | wx.EXPAND, 5)
self.m_button8 = wx.Button(sbSizer6.GetStaticBox(
), wx.ID_ANY, u"选择视频", wx.DefaultPosition, wx.DefaultSize, 0)
sbSizer6.Add(self.m_button8, 1, wx.ALL | wx.EXPAND, 5)
sbSizer5.Add(sbSizer6, 0, wx.EXPAND, 5)
sbSizer7 = wx.StaticBoxSizer(wx.StaticBox(
sbSizer5.GetStaticBox(), wx.ID_ANY, u"特征提取"), wx.VERTICAL)
self.m_button1 = wx.Button(sbSizer7.GetStaticBox(
), wx.ID_ANY, u"特征提取", wx.DefaultPosition, wx.DefaultSize, 0)
sbSizer7.Add(self.m_button1, 0, wx.ALL | wx.EXPAND, 5)
sbSizer5.Add(sbSizer7, 0, wx.EXPAND, 5)
sbSizer8 = wx.StaticBoxSizer(wx.StaticBox(
sbSizer5.GetStaticBox(), wx.ID_ANY, u"手语预测"), wx.VERTICAL)
self.m_button5 = wx.Button(sbSizer8.GetStaticBox(
), wx.ID_ANY, u"选择分类模型", wx.DefaultPosition, wx.DefaultSize, 0)
sbSizer8.Add(self.m_button5, 0, wx.ALL | wx.EXPAND, 5)
self.m_button6 = wx.Button(sbSizer8.GetStaticBox(
), wx.ID_ANY, u"预测", wx.DefaultPosition, wx.DefaultSize, 0)
sbSizer8.Add(self.m_button6, 0, wx.ALL | wx.EXPAND, 5)
sbSizer5.Add(sbSizer8, 0, wx.EXPAND, 5)
sbSizer9 = wx.StaticBoxSizer(wx.StaticBox(
sbSizer5.GetStaticBox(), wx.ID_ANY, u"示例图"), wx.VERTICAL)
self.black_img = wx.StaticBitmap(sbSizer9.GetStaticBox(
), wx.ID_ANY, wx.NullBitmap, wx.DefaultPosition, wx.DefaultSize, 0)
sbSizer9.Add(self.black_img, 1, wx.ALL | wx.EXPAND, 5)
sbSizer5.Add(sbSizer9, 1, wx.EXPAND, 5)
bSizer5.Add(sbSizer5, 1, wx.EXPAND, 5)
bSizer2.Add(bSizer5, 1, wx.EXPAND, 5)
bSizer1.Add(bSizer2, 1, wx.EXPAND, 5)
self.SetSizer(bSizer1)
self.Layout()
self.m_menubar1 = wx.MenuBar(0)
self.m_menubar1.SetForegroundColour(
wx.SystemSettings.GetColour(wx.SYS_COLOUR_ACTIVECAPTION))
self.m_menubar1.SetBackgroundColour(
wx.SystemSettings.GetColour(wx.SYS_COLOUR_ACTIVECAPTION))
self.m_menu1 = wx.Menu()
self.m_menuItem1 = wx.MenuItem(
self.m_menu1, wx.ID_ANY, u"图片", wx.EmptyString, wx.ITEM_NORMAL)
self.m_menu1.Append(self.m_menuItem1)
self.m_menuItem2 = wx.MenuItem(
self.m_menu1, wx.ID_ANY, u"视频", wx.EmptyString, wx.ITEM_NORMAL)
self.m_menu1.Append(self.m_menuItem2)
self.m_menubar1.Append(self.m_menu1, u"检测")
self.m_menu2 = wx.Menu()
self.m_menubar1.Append(self.m_menu2, u"采集")
self.m_menu3 = wx.Menu()
self.m_menubar1.Append(self.m_menu3, u"关于")
self.SetMenuBar(self.m_menubar1)
self.m_statusBar2 = self.CreateStatusBar(1, wx.STB_SIZEGRIP, wx.ID_ANY)
self.m_statusBar2.SetForegroundColour(
wx.SystemSettings.GetColour(wx.SYS_COLOUR_ACTIVECAPTION))
self.m_statusBar2.SetBackgroundColour(
wx.SystemSettings.GetColour(wx.SYS_COLOUR_ACTIVECAPTION))
self.Centre(wx.BOTH)
# Connect Events
self.m_button7.Bind(wx.EVT_BUTTON, self.img_btn)
self.m_button8.Bind(wx.EVT_BUTTON, self.video_btn)
self.m_button1.Bind(wx.EVT_BUTTON, self.feature_btn)
self.m_button5.Bind(wx.EVT_BUTTON, self.chosemodel_btn)
self.m_button6.Bind(wx.EVT_BUTTON, self.predict_btn)
"""界面"""
self.image_demo = wx.Image(DEMO, wx.BITMAP_TYPE_ANY).Scale(500,400)
self.bmp = wx.StaticBitmap(
self.black_img, -1, wx.Bitmap(self.image_demo))
# 设置窗口标题的图标
self.icon = wx.Icon(ICO, wx.BITMAP_TYPE_ICO)
self.SetIcon(self.icon)
print("wxpython界面初始化加载完成!")
"""参数"""
#
self.VIDEO_STREAM = False
self.IMAGE_STREAM = False
self.orgin_img_show = root_path+'docs/images/brave_40.jpg' # 默认预测图片
self.model_path = root_path+'model/' # 训练的深度模型
self._loadmodel() # 加载OpenPose和yolo模型
self.beyes_model = root_path+'model/train_model.m' # 默认贝叶斯模型
self.XX_test = [] # 测试集
def __del__(self):
pass
# Virtual event handlers, overide them in your derived class
def img_btn(self, event):
self.IMAGE_STREAM = True
dialog = wx.FileDialog(self, u"选择图片检测", os.getcwd(
), '', wildcard="(*.jpg)|*.jpg|(*.png)|*.png", style=wx.FD_OPEN | wx.FD_CHANGE_DIR)
if dialog.ShowModal() == wx.ID_OK:
# 如果确定了选择的文件夹,将文件夹路径写到tips控件
self.tips.SetValue(u"文件路径:"+dialog.GetPath()+"\n")
self.orgin_img_show = cv2.imread(str(dialog.GetPath())) # 更新全局变量路径
dialog.Destroy
# cv2转wxpython
self.orgin_img_show = cv2.resize(self.orgin_img_show,(600,500),)
height, width = self.orgin_img_show.shape[:2]
image1 = cv2.cvtColor(self.orgin_img_show, cv2.COLOR_BGR2RGB)
pic = wx.Bitmap.FromBuffer(width, height, image1)
# 显示图片在panel上:
self.orgin_img.SetBitmap(pic)
def video_btn(self, event):
self.VIDEO_STREAM = True
# 选择文件夹对话框窗口
dialog = wx.FileDialog(self, u"选择视频检测", os.getcwd(
), '', wildcard="(*.mp4)|*.mp4", style=wx.FD_OPEN | wx.FD_CHANGE_DIR)
if dialog.ShowModal() == wx.ID_OK:
# 如果确定了选择的文件夹,将文件夹路径写到tips控件
self.tips.SetValue(u"文件路径:"+dialog.GetPath()+"\n")
self.video_path = str(dialog.GetPath())# 更新全局变量路径
dialog.Destroy
# 创建子线程,按钮调用这个方法,
_thread.start_new_thread(self._getEffectiveFrame, (event,))
def feature_btn(self, event):
"""使用多线程,子线程运行后台的程序,主线程更新前台的UI,这样不会互相影响"""
# 创建子线程,按钮调用这个方法,
_thread.start_new_thread(self._learning_hand, (event,))
def chosemodel_btn(self, event):
event.Skip()
# beye模型
dialog = wx.FileDialog(self, u"选择分类器", os.getcwd()+"/model/", '',
wildcard="(*.pkl)|*.pkl|(*.m)|*.m", style=wx.FD_OPEN | wx.FD_CHANGE_DIR)
if dialog.ShowModal() == wx.ID_OK:
# 如果确定了选择的文件夹,将文件夹路径写到tips控件
self.tips.AppendText(u"分类器模型路径:"+dialog.GetPath()+"\n")
self.beyes_model = str(dialog.GetPath()) # 更新全局变量路径
dialog.Destroy
def predict_btn(self, event):
start = time.time()
self.clf = joblib.load(self.beyes_model) # 加载分类器模型
predictions_labels = self.clf.predict(self.XX_test) # 预测
self.result.AppendText(u"预测结果:\n"+str(predictions_labels)+"\n")
self.result.AppendText(u"预测耗时:{:.2f} s".format(time.time() - start)+"\n")
def _loadmodel(self):
start = time.time()
self.pose_model = general_coco_model(self.model_path) # coco加载模型
self._yolo = YOLO() # 1.加载模型yolo
self.tips.SetValue(u"模型加载耗时:{:.2f} s".format(time.time() - start)+"\n")
def _learning_hand(self, event):
start = time.time()
info, lineimage = getImgInfo(self.orgin_img_show, self.pose_model, self._yolo, '')
self.XX_test.append(info)
self.tips.AppendText(u"特征提取耗时:{:.2f} s".format(time.time() - start)+"\n")
lineimage = cv2.resize(lineimage,(600,500),)
height, width = lineimage.shape[:2]
image1 = cv2.cvtColor(lineimage, cv2.COLOR_BGR2RGB)# opencv中imread的图片内部是BGR排序,wxPython的StaticBitmap需要的图片是RGB排序,不转换会出现颜色变换
pic = wx.Bitmap.FromBuffer(width, height, image1)
# 显示图片在panel上:
self.result_img.SetBitmap(pic)
self.tips.AppendText(u"数字特征:"+str(info)+"\n")
def _getEffectiveFrame(self,event):
(filepath, tempfilename) = os.path.split(self.video_path)#分离路径和文件名
(filename, extension) = os.path.splitext(tempfilename)#区分文件的名字和后缀
#Setting fixed threshold criteria设置固定阈值标准
USE_THRESH = False
#fixed threshold value固定阈值
THRESH = 0.6
#Setting fixed threshold criteria设置固定阈值标准
USE_TOP_ORDER = False
#Setting local maxima criteria设置局部最大值标准
USE_LOCAL_MAXIMA = True
#Number of top sorted frames排名最高的帧数
NUM_TOP_FRAMES = 50
#smoothing window size平滑窗口大小
len_window = int(50)
#self.tips.AppendText(u"视频路径:"+self.video_path+"\n")
# load video and compute diff between frames加载视频并计算帧之间的差异
cap = cv2.VideoCapture(self.video_path)
curr_frame = None
prev_frame = None
frame_diffs = []
frames = []
success, frame = cap.read()
i = 0
while(success):
luv = cv2.cvtColor(frame, cv2.COLOR_BGR2LUV)
curr_frame = luv
if curr_frame is not None and prev_frame is not None:
#logic here
diff = cv2.absdiff(curr_frame, prev_frame)#获取差分图
diff_sum = np.sum(diff)
diff_sum_mean = diff_sum / (diff.shape[0] * diff.shape[1])#平均帧
frame_diffs.append(diff_sum_mean)
frame = Frame(i, diff_sum_mean)
frames.append(frame)
prev_frame = curr_frame
i = i + 1
success, frame = cap.read()
cap.release()
# compute keyframe
keyframe_id_set = set()
if USE_TOP_ORDER:
# sort the list in descending order以降序对列表进行排序
frames.sort(key=operator.attrgetter("diff"), reverse=True)# 排序operator.attrgetter
for keyframe in frames[:NUM_TOP_FRAMES]:
keyframe_id_set.add(keyframe.id)
if USE_THRESH:
print("Using Threshold")#使用阈值
for i in range(1, len(frames)):
if (rel_change(np.float(frames[i - 1].diff), np.float(frames[i].diff)) >= THRESH):
keyframe_id_set.add(frames[i].id)
if USE_LOCAL_MAXIMA:
print("Using Local Maxima")#使用局部极大值
diff_array = np.array(frame_diffs)
sm_diff_array = smooth(diff_array, len_window)#平滑
frame_indexes = np.asarray(argrelextrema(sm_diff_array, np.greater))[0]#找极值
for i in frame_indexes:
keyframe_id_set.add(frames[i - 1].id)# 记录极值帧数
# self.keyFrame_img = plt.figure(figsize=(40, 20))
# plt.locator_params("x", nbins = 100)
# # stem 绘制离散函数,polt是连续函数
# plt.stem(sm_diff_array,linefmt='-',markerfmt='o',basefmt='--',label='sm_diff_array')
#plt.savefig(dirfile + filename+'_plot.png')
# save all keyframes as image将所有关键帧另存为图像
cap = cv2.VideoCapture(str(self.video_path))
curr_frame = None
keyframes = []
success, frame = cap.read()
idx = 0
while(success):
if idx in keyframe_id_set:
name = filename+'_' + str(idx) + ".jpg"
#cv2.imwrite(dirfile + name, frame)
self.tips.AppendText(u"极值帧数:"+ name +"\n")
self.orgin_img = frame
_thread.start_new_thread(self._learning_hand, (event,)) # 关键点append
keyframe_id_set.remove(idx)
idx = idx + 1
success, frame = cap.read()
cap.release()
def main():
app = wx.App(False)
frame = MyFrame1(None)
frame.Show(True)
# start the applications
app.MainLoop()
if __name__ == '__main__':
main()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化