加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
gen.py 17.46 KB
一键复制 编辑 原始数据 按行查看 历史
lngao 提交于 2018-01-18 10:15 . Update gen.py
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815
import argparse
FLAGS = None
class Generator():
def __init__(self):
self.first_prior = True
self.anchors = create_ssd_anchors()
self.last = "data"
def header(self, name):
print("name: \"%s\"" % name)
def data_deploy(self):
print(
"""input: "data"
input_shape {
dim: 1
dim: 3
dim: %d
dim: %d
}""" % (self.input_size, self.input_size))
def data_train_classifier(self):
print(
"""layer {
name: "data"
type: "Data"
top: "data"
top: "label"
data_param{
source: "%s"
backend: LMDB
batch_size: 64
}
transform_param {
crop_size: %s
mean_file: "imagenet.mean"
mirror: true
}
include: { phase: TRAIN }
}
}""")
def data_train_ssd(self):
print(
"""layer {
name: "data"
type: "AnnotatedData"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.007843
mirror: true
mean_value: 127.5
mean_value: 127.5
mean_value: 127.5
resize_param {
prob: 1.0
resize_mode: WARP
height: %d
width: %d
interp_mode: LINEAR
interp_mode: AREA
interp_mode: NEAREST
interp_mode: CUBIC
interp_mode: LANCZOS4
}
emit_constraint {
emit_type: CENTER
}
distort_param {
brightness_prob: 0.5
brightness_delta: 32.0
contrast_prob: 0.5
contrast_lower: 0.5
contrast_upper: 1.5
hue_prob: 0.5
hue_delta: 18.0
saturation_prob: 0.5
saturation_lower: 0.5
saturation_upper: 1.5
random_order_prob: 0.0
}
expand_param {
prob: 0.5
max_expand_ratio: 4.0
}
}
data_param {
source: "%s"
batch_size: 32
backend: LMDB
}
annotated_data_param {
batch_sampler {
max_sample: 1
max_trials: 1
}
batch_sampler {
sampler {
min_scale: 0.3
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.1
}
max_sample: 1
max_trials: 50
}
batch_sampler {
sampler {
min_scale: 0.3
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.3
}
max_sample: 1
max_trials: 50
}
batch_sampler {
sampler {
min_scale: 0.3
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.5
}
max_sample: 1
max_trials: 50
}
batch_sampler {
sampler {
min_scale: 0.3
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.7
}
max_sample: 1
max_trials: 50
}
batch_sampler {
sampler {
min_scale: 0.3
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.9
}
max_sample: 1
max_trials: 50
}
batch_sampler {
sampler {
min_scale: 0.3
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
max_jaccard_overlap: 1.0
}
max_sample: 1
max_trials: 50
}
label_map_file: "%s"
}
}""" % (self.input_size, self.input_size, self.lmdb, self.label_map))
def data_test_ssd(self):
print(
"""layer {
name: "data"
type: "AnnotatedData"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
scale: 0.007843
mean_value: 127.5
mean_value: 127.5
mean_value: 127.5
resize_param {
prob: 1.0
resize_mode: WARP
height: %d
width: %d
interp_mode: LINEAR
}
}
data_param {
source: "%s"
batch_size: 8
backend: LMDB
}
annotated_data_param {
batch_sampler {
}
label_map_file: "%s"
}
}""" % (self.input_size, self.input_size, self.lmdb, self.label_map))
def classifier_loss(self):
print(
"""layer {
name: "softmax"
type: "Softmax"
bottom: "%s"
top: "prob"
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "prob"
bottom: "label"
top: "accuracy"
}
layer{
name: "loss"
type: "SoftmaxWithLoss"
bottom: "%s"
bottom: "label"
loss_weight: 1
}""" % (self.last, self.last))
def ssd_predict(self):
print(
"""layer {
name: "mbox_conf_reshape"
type: "Reshape"
bottom: "mbox_conf"
top: "mbox_conf_reshape"
reshape_param {
shape {
dim: 0
dim: -1
dim: %d
}
}
}
layer {
name: "mbox_conf_softmax"
type: "Softmax"
bottom: "mbox_conf_reshape"
top: "mbox_conf_softmax"
softmax_param {
axis: 2
}
}
layer {
name: "mbox_conf_flatten"
type: "Flatten"
bottom: "mbox_conf_softmax"
top: "mbox_conf_flatten"
flatten_param {
axis: 1
}
}
layer {
name: "detection_out"
type: "DetectionOutput"
bottom: "mbox_loc"
bottom: "mbox_conf_flatten"
bottom: "mbox_priorbox"
top: "detection_out"
include {
phase: TEST
}
detection_output_param {
num_classes: %d
share_location: true
background_label_id: 0
nms_param {
nms_threshold: 0.45
top_k: 100
}
code_type: CENTER_SIZE
keep_top_k: 100
confidence_threshold: 0.25
}
}""" % (self.class_num, self.class_num))
def ssd_test(self):
print(
"""layer {
name: "mbox_conf_reshape"
type: "Reshape"
bottom: "mbox_conf"
top: "mbox_conf_reshape"
reshape_param {
shape {
dim: 0
dim: -1
dim: %d
}
}
}
layer {
name: "mbox_conf_softmax"
type: "Softmax"
bottom: "mbox_conf_reshape"
top: "mbox_conf_softmax"
softmax_param {
axis: 2
}
}
layer {
name: "mbox_conf_flatten"
type: "Flatten"
bottom: "mbox_conf_softmax"
top: "mbox_conf_flatten"
flatten_param {
axis: 1
}
}
layer {
name: "detection_out"
type: "DetectionOutput"
bottom: "mbox_loc"
bottom: "mbox_conf_flatten"
bottom: "mbox_priorbox"
top: "detection_out"
include {
phase: TEST
}
detection_output_param {
num_classes: %d
share_location: true
background_label_id: 0
nms_param {
nms_threshold: 0.45
top_k: 400
}
code_type: CENTER_SIZE
keep_top_k: 200
confidence_threshold: 0.01
}
}
layer {
name: "detection_eval"
type: "DetectionEvaluate"
bottom: "detection_out"
bottom: "label"
top: "detection_eval"
include {
phase: TEST
}
detection_evaluate_param {
num_classes: %d
background_label_id: 0
overlap_threshold: 0.5
evaluate_difficult_gt: false
}
}""" % (self.class_num, self.class_num, self.class_num))
def ssd_loss(self):
print(
"""layer {
name: "mbox_loss"
type: "MultiBoxLoss"
bottom: "mbox_loc"
bottom: "mbox_conf"
bottom: "mbox_priorbox"
bottom: "label"
top: "mbox_loss"
include {
phase: TRAIN
}
propagate_down: true
propagate_down: true
propagate_down: false
propagate_down: false
loss_param {
normalization: VALID
}
multibox_loss_param {
loc_loss_type: SMOOTH_L1
conf_loss_type: SOFTMAX
loc_weight: 1.0
num_classes: %d
share_location: true
match_type: PER_PREDICTION
overlap_threshold: 0.5
use_prior_for_matching: true
background_label_id: 0
use_difficult_gt: true
neg_pos_ratio: 3.0
neg_overlap: 0.5
code_type: CENTER_SIZE
ignore_cross_boundary_bbox: false
mining_type: MAX_NEGATIVE
}
}""" % self.class_num)
def concat_boxes(self, convs):
for layer in ["loc", "conf"]:
bottom =""
for cnv in convs:
bottom += "\n bottom: \"%s_mbox_%s_flat\"" % (cnv, layer)
print(
"""layer {
name: "mbox_%s"
type: "Concat"%s
top: "mbox_%s"
concat_param {
axis: 1
}
}""" % (layer, bottom, layer))
bottom =""
for cnv in convs:
bottom += "\n bottom: \"%s_mbox_priorbox\"" % cnv
print(
"""layer {
name: "mbox_priorbox"
type: "Concat"%s
top: "mbox_priorbox"
concat_param {
axis: 2
}
}""" % bottom)
def conv(self, name, out, kernel, stride=1, group=1, bias=False, bottom=None):
if self.stage == "deploy": #for deploy, merge bn to bias, so bias must be true
bias = True
if bottom is None:
bottom = self.last
padstr = ""
if kernel > 1:
padstr = "\n pad: %d" % (kernel / 2)
groupstr = ""
if group > 1:
groupstr = "\n group: %d\n engine: CAFFE" % group
stridestr = ""
if stride > 1:
stridestr = "\n stride: %d" % stride
bias_lr_mult = ""
bias_filler = ""
if bias == True:
bias_filler = """
bias_filler {
type: "constant"
value: 0.0
}"""
bias_lr_mult = """
param {
lr_mult: 2.0
decay_mult: 0.0
}"""
biasstr = ""
if bias == False:
biasstr = "\n bias_term: false"
print(
"""layer {
name: "%s"
type: "Convolution"
bottom: "%s"
top: "%s"
param {
lr_mult: 1.0
decay_mult: 1.0
}%s
convolution_param {
num_output: %d%s%s
kernel_size: %d%s%s
weight_filler {
type: "msra"
}%s
}
}""" % (name, bottom, name, bias_lr_mult, out, biasstr, padstr, kernel, stridestr, groupstr, bias_filler))
self.last = name
def bn(self, name):
if self.stage == "deploy": #deploy does not need bn, you can use merge_bn.py to generate a new caffemodel
return
print(
"""layer {
name: "%s/bn"
type: "BatchNorm"
bottom: "%s"
top: "%s"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "%s/scale"
type: "Scale"
bottom: "%s"
top: "%s"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}""" % (name,name,name,name,name,name))
self.last = name
def relu(self, name):
print(
"""layer {
name: "%s/relu"
type: "ReLU"
bottom: "%s"
top: "%s"
}""" % (name, name, name))
self.last
self.last = name
def conv_bn_relu(self, name, num, kernel, stride):
self.conv(name, num, kernel, stride)
self.bn(name)
self.relu(name)
def conv_bn_relu_with_factor(self, name, num, kernel, stride):
num = int(num * self.size)
self.conv(name, num, kernel, stride)
self.bn(name)
self.relu(name)
def conv_dw_pw(self, name, inp, outp, stride):
inp = int(inp * self.size)
outp = int(outp * self.size)
name1 = name + "/dw"
self.conv(name1, inp, 3, stride, inp)
self.bn(name1)
self.relu(name1)
name2 = name
self.conv(name2, outp, 1)
self.bn(name2)
self.relu(name2)
def ave_pool(self, name):
print(
"""layer {
name: "%s"
type: "Pooling"
bottom: "%s"
top: "%s"
pooling_param {
pool: AVE
global_pooling: true
}
}""" % (name, self.last, name))
self.last = name
def permute(self, name):
print(
"""layer {
name: "%s_perm"
type: "Permute"
bottom: "%s"
top: "%s_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}""" % (name, name, name))
self.last = name + "_perm"
def flatten(self, name):
print(
"""layer {
name: "%s_flat"
type: "Flatten"
bottom: "%s_perm"
top: "%s_flat"
flatten_param {
axis: 1
}
}""" % (name, name, name))
self.last = name + "_flat"
def mbox_prior(self, name, min_size, max_size, aspect_ratio):
min_box = self.input_size * min_size
max_box_str = ""
aspect_ratio_str = ""
if max_size is not None:
max_box = self.input_size * max_size
max_box_str = "\n max_size: %.1f" % max_box
for ar in aspect_ratio:
aspect_ratio_str += "\n aspect_ratio: %.1f" % ar
print(
"""layer {
name: "%s_mbox_priorbox"
type: "PriorBox"
bottom: "%s"
bottom: "data"
top: "%s_mbox_priorbox"
prior_box_param {
min_size: %.1f%s%s
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
offset: 0.5
}
}""" % (name, name, name, float(min_box), max_box_str, aspect_ratio_str))
def mbox_conf(self, bottom, num):
name = bottom + "_mbox_conf"
self.conv(name, num, 1, bias=True, bottom=bottom)
self.permute(name)
self.flatten(name)
def mbox_loc(self, bottom, num):
name = bottom + "_mbox_loc"
self.conv(name, num, 1, bias=True, bottom=bottom)
self.permute(name)
self.flatten(name)
def mbox(self, bottom, num):
self.mbox_loc(bottom, num * 4)
self.mbox_conf(bottom, num * self.class_num)
min_size, max_size = self.anchors[0]
if self.first_prior:
self.mbox_prior(bottom, min_size, None, [2.0])
self.first_prior = False
else:
self.mbox_prior(bottom, min_size, max_size,[2.0,3.0])
self.anchors.pop(0)
def fc(self, name, output):
print(
"""layer {
name: "%s"
type: "InnerProduct"
bottom: "%s"
top: "%s"
param { lr_mult: 1 decay_mult: 1 }
param { lr_mult: 2 decay_mult: 0 }
inner_product_param {
num_output: %d
weight_filler { type: "msra" }
bias_filler { type: "constant" value: 0 }
}
}""" % (name, self.last, name, output))
self.last = name
def reshape(self, name, output):
print(
"""layer {
name: "%s"
type: "Reshape"
bottom: "%s"
top: "%s"
reshape_param { shape { dim: -1 dim: %s dim: 1 dim: 1 } }
}""" % ( name, self.last, name, output))
self.last = name
def generate(self, stage, gen_ssd, size, class_num):
self.class_num = class_num
self.lmdb = FLAGS.lmdb
self.label_map = FLAGS.label_map
self.stage = stage
if gen_ssd:
self.input_size = 300
else:
self.input_size = 224
self.size = size
self.class_num = class_num
if gen_ssd:
self.header("MobileNet-SSD")
else:
self.header("MobileNet")
if stage == "train":
if gen_ssd:
assert(self.lmdb is not None)
assert(self.label_map is not None)
self.data_train_ssd()
else:
assert(self.lmdb is not None)
self.data_train_classifier()
elif stage == "test":
self.data_test_ssd()
else:
self.data_deploy()
self.conv_bn_relu_with_factor("conv0", 32, 3, 2)
self.conv_dw_pw("conv1", 32, 64, 1)
self.conv_dw_pw("conv2", 64, 128, 2)
self.conv_dw_pw("conv3", 128, 128, 1)
self.conv_dw_pw("conv4", 128, 256, 2)
self.conv_dw_pw("conv5", 256, 256, 1)
self.conv_dw_pw("conv6", 256, 512, 2)
self.conv_dw_pw("conv7", 512, 512, 1)
self.conv_dw_pw("conv8", 512, 512, 1)
self.conv_dw_pw("conv9", 512, 512, 1)
self.conv_dw_pw("conv10",512, 512, 1)
self.conv_dw_pw("conv11",512, 512, 1)
self.conv_dw_pw("conv12",512, 1024, 2)
self.conv_dw_pw("conv13",1024, 1024, 1)
if gen_ssd is True:
self.conv_bn_relu("conv14_1", 256, 1, 1)
self.conv_bn_relu("conv14_2", 512, 3, 2)
self.conv_bn_relu("conv15_1", 128, 1, 1)
self.conv_bn_relu("conv15_2", 256, 3, 2)
self.conv_bn_relu("conv16_1", 128, 1, 1)
self.conv_bn_relu("conv16_2", 256, 3, 2)
self.conv_bn_relu("conv17_1", 64, 1, 1)
self.conv_bn_relu("conv17_2", 128, 3, 2)
self.mbox("conv11", 3)
self.mbox("conv13", 6)
self.mbox("conv14_2", 6)
self.mbox("conv15_2", 6)
self.mbox("conv16_2", 6)
self.mbox("conv17_2", 6)
self.concat_boxes(['conv11', 'conv13', 'conv14_2', 'conv15_2', 'conv16_2', 'conv17_2'])
if stage == "train":
self.ssd_loss()
elif stage == "deploy":
self.ssd_predict()
else:
self.ssd_test()
else:
self.ave_pool("pool")
self.conv("fc", class_num, 1, 1, 1, True)
if stage == "train":
self.classifier_loss()
def create_ssd_anchors(num_layers=6,
min_scale=0.2,
max_scale=0.95):
box_specs_list = []
scales = [min_scale + (max_scale - min_scale) * i / (num_layers - 1)
for i in range(num_layers)] + [1.0]
return zip(scales[:-1], scales[1:])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'-s','--stage',
type=str,
default='train',
help='The stage of prototxt, train|test|deploy.'
)
parser.add_argument(
'-d','--lmdb',
type=str,
default=None,
help='The training database'
)
parser.add_argument(
'-l','--label-map',
type=str,
default=None,
help='The label map for ssd training.'
)
parser.add_argument(
'--classifier',
action='store_true',
help='Default generate ssd, if this is set, generate classifier prototxt.'
)
parser.add_argument(
'--size',
type=float,
default=1.0,
help='The size of mobilenet channels, support 1.0, 0.75, 0.5, 0.25.'
)
parser.add_argument(
'-c', '--class-num',
type=int,
required=True,
help='Output class number, include the \'backgroud\' class. e.g. 21 for voc.'
)
FLAGS, unparsed = parser.parse_known_args()
gen = Generator()
gen.generate(FLAGS.stage, not FLAGS.classifier, FLAGS.size, FLAGS.class_num)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化