代码拉取完成,页面将自动刷新
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 4 15:10:57 2017
@author: hans
"""
from imutils.object_detection import non_max_suppression
from edge_boxes_python import edge_boxes_python
import numpy as np
from skimage.feature import hog
from sklearn.externals import joblib
import cv2
import os
import time
def rgb2gray(im):
gray = im[:, :, 0]*0.2989+im[:, :, 1]*0.5870+im[:, :, 2]*0.1140
return gray
def getFeat(data):
normalize = True
visualize = False
block_norm = 'L2-Hys'
cells_per_block = [2,2]
pixels_per_cell = [20,20]
orientations = 9
gray = rgb2gray(data)/255.0
fd = hog(gray, orientations, pixels_per_cell, cells_per_block, block_norm, visualize, normalize)
return fd
if __name__ == "__main__":
model_path = './models/svm_pso_less_hnm_50.model'
clf = joblib.load(model_path)
c = cv2.VideoCapture(0)
num = 0
while 1:
t0 = time.time()
num += 1
ret, image = c.read()
rects = []
eb = edge_boxes_python(os.path.expanduser('~') + '/HoG_SVM/cup/sf.dat')
bbs = eb.get_edge_boxes(image)
for (xmin, ymin, width, height, hb) in bbs[0:10]:
xmin = int(xmin)
ymin = int(ymin)
width = int(width)
height = int(height)
win = image[ymin:ymin + height, xmin:xmin + width]
window = cv2.resize(win,(200,200),interpolation=cv2.INTER_CUBIC)
win_fd = getFeat(window)
win_fd.shape = 1,-1
result = int(clf.predict(win_fd))
if result == 1:
rects.append([xmin, ymin, xmin + width, ymin + height])
if len(rects) != 0:
rects = np.array(rects)
pick = non_max_suppression(rects, probs=None, overlapThresh=0.1)
for (xA, yA, xB, yB) in pick:
cv2.rectangle(image, (xA, yA), (xB, yB), (0, 255, 0), 2)
font=cv2.FONT_HERSHEY_SIMPLEX
t1 = time.time()
cv2.putText(image,'%.2f' %(1/(t1-t0)),(0,30),font,0.9,(255,255,255),2)
cv2.imshow("After NMS", image)
cv2.waitKey(1)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。