代码拉取完成,页面将自动刷新
同步操作将从 霍开拓/ComputationalPhysics 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
"""
Created on Mon Sep 16 18:31:35 2013
PHYS 613, Assignment 3
Nick Crump
"""
# Problem 3 (EBB3)
"""
Finding best fit parameters using a non-linear least squares method to
data with a functional dependence of the fractal dimension.
"""
from math import log,e
import numpy as np
import matplotlib.pyplot as plt
# import sample data set "P3FractalTable.txt"
c, fd = np.loadtxt('P3FractalTable.txt', skiprows=1, unpack=True)
# Function for fractal dimension f = a + b x**c
#*******************************************************************
def fitfunc(a,b,c,x):
f = a + b*(x**c)
dfa = 1
dfb = x**c
dfc = b*(x**c)*log(x,e)
return f,dfa,dfb,dfc
#*******************************************************************
# Gauss-Newton fitting method
#*******************************************************************
def GaussNewtonFit(x,y,a,b,c,n):
# solves for coefficients using a matrix solve of modified 'normal equations'
# uses fractal dimension model f = a + b x**c
# a,b,c are the best fit model parameters to be determined
pts = len(x)
fdVals = [] # stores fit values
# loop over specified number of iterations to update coefficients a,b,c
for k in range(n):
matrixA = np.zeros((pts,3))
matrixB = np.zeros((pts,1))
# loop to populate arrays
for i in range(pts):
f,dfa,dfb,dfc = fitfunc(a,b,c,x[i])
# populate matrix elements
matrixB[i][0] = y[i]-f
matrixA[i][0] = dfa
matrixA[i][1] = dfb
matrixA[i][2] = dfc
# create normal equation (A^T)Ax=(A^T)b
At = np.transpose(matrixA)
AtA = np.dot(At,matrixA)
AtB = np.dot(At,matrixB)
coeff = np.linalg.solve(AtA,AtB)
# get coefficients
a = a + coeff[0]
b = b + coeff[1]
c = c + coeff[2]
# we now have the coefficients for the fit
# next plug x values back into fit model and compute new y fit values
varsum = 0
# loop to get y fit values and compute variance on fit
for i in range(pts):
val,dfa,dfb,dfc = fitfunc(a,b,c,x[i])
fdVals.append(val)
# compute variance from erorr (error=actualY-fitY)
error = y[i] - val
varsum = varsum + error**2
# using variance as measure for 'goodness of fit'
# computed as variance = (sum of squares of errors) / (nDataPts-nFitCoefficients-1)
variance = varsum/(pts-3-1)
print 'coeffs=',a,b,c
print 'variance=',variance
# plot data set with fractal dimension fit model
plt.xlabel('Concentration')
plt.ylabel('Fractal Dimension')
plt.plot(x,y,'bo--',linewidth=1.8, label='Data Set')
plt.plot(x,fdVals, 'ro-', linewidth=1.5, label='Fractal Model')
plt.annotate('$d_f = 1.78 + 0.86x^{0.45}$',fontsize=15,xy=(0.16,0.70),xycoords='figure fraction')
plt.legend(loc=2)
#*******************************************************************
GaussNewtonFit(c,fd,1.8,1.0,0.6,5)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。