Fetch the repository succeeded.
This action will force synchronization from 霍开拓/ComputationalPhysics, which will overwrite any changes that you have made since you forked the repository, and can not be recovered!!!
Synchronous operation will process in the background and will refresh the page when finishing processing. Please be patient.
"""
Created on Wed Sep 25 23:14:56 2013
PHYS 613, Assignment 5
Nick Crump
"""
# Exercise 4.4
# Exercise 4.6
"""
From Computational Physics by Devries
"""
import Integration as Int
import numpy as np
from math import sqrt,sin,pi
import matplotlib.pyplot as plt
# Exercise 4.4
#*******************************************************************
v = np.linspace(-4,4,256) # angles for Fresnel equations
# arrays to store Fresnel Eq values and intensities
Cv = []
Sv = []
Iv = []
# generate Fresnel Eqns and intensities
for i in v:
# call Romberg method from my integration module
Cvi = Int.romberg('cos((pi/2)*x**2)',0,i,10)
Svi = Int.romberg('sin((pi/2)*x**2)',0,i,10)
Ivi = 0.5*((Cvi+0.5)**2 + (Svi+0.5)**2)
# append values
Cv.append(Cvi)
Sv.append(Svi)
Iv.append(Ivi)
# plot Intensity
plt.figure(1)
plt.subplot(211)
plt.plot(v,Iv,'g',label='Intensity')
plt.ylabel('Intensity')
plt.legend(loc=4)
# plot Fresnel Eqns C(v) and S(v)
plt.subplot(212)
plt.plot(v,Cv,'b',label='Fresnel $C(v)$')
plt.plot(v,Sv,'r',label='Fresnel $S(v)$')
plt.xlabel('Distance $v$')
plt.ylabel('Fresnel Equations')
plt.legend(loc=4)
# plot C(v) vs S(v) to get Cornu Spiral
plt.figure(2)
plt.plot(Cv,Sv,label='Cornu Spiral')
plt.plot([-0.5,0.5],[-0.5,0.5],'rx',markersize=8)
plt.xlabel('Fresnel $C\ (v)$')
plt.ylabel('Fresnel $S\ (v)$')
plt.legend(loc=2)
#*******************************************************************
# Exercise 4.6
#*******************************************************************
# set initial parameters
L = 1.0 # length of string (m)
g = 9.8 # gravity (m/s**2)
# period for simple pendulum (using small angle approx)
Tsimp = (2*pi)*sqrt(L/g) # (sec)
# arrays
period = [] # calculated periods (sec)
theta0 = np.arange(0,180,10) # initial angles (deg)
# iterate over angle theta0 (initial angle at t=0)
for i in theta0:
# argument of elliptical integral (converted to radians)
k = sin((i/2)*(pi/180))
# integrand
f = '1.0/(1-('+str(k)+'**2)*sin(x)**2)**0.5'
# call Romberg method from my integration module
romb = Int.romberg(f,0,pi/2,10)
# compute and store periods for each initial angle
p = 4.0*sqrt(L/g)*romb
period.append(p)
# check when period differs from simple pendulum period by more than 1%
if abs(p-Tsimp) > 0.01*Tsimp: print i,p,Tsimp
# plot results
plt.figure(3)
plt.plot(theta0,period,'bo-')
plt.xlabel('Amplitude (deg)')
plt.ylabel('Period (sec)')
#*******************************************************************
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。