代码拉取完成,页面将自动刷新
同步操作将从 霍开拓/ComputationalPhysics 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
"""
Created on Sat Nov 09 13:53:23 2013
PHYS 613, Assignment 8
Nick Crump
"""
# Problem 1 (EBB11): 1D Harmonic Oscillator
"""
Solves the 1D harmonic oscillator using simple and modified Euler methods.
"""
import numpy as np
import matplotlib.pyplot as plt
# solve 1D harmonic oscillator by simple Euler method
# ***************************************************
#----------------------------------------------------
# t0,ft = time to oscillate over
# x0 = initial position
# v0 = initial velocity
# h = time step
# w = oscillation freq (omega)
# m = mass
#----------------------------------------------------
def simpleEulerSHM(t0,tf,x0,v0,h,w,m):
# define initial parameters
k = m*(w**2) # spring constant
pe = 0.5*k*(x0**2) # potential energy
ke = 0.5*m*(v0**2) # kinetic energy
e = pe + ke # total energy
# setup array for storing solutions
t = np.arange(t0,tf,h) # time
x = [x0] # position
v =[v0] # velocity
PE = [pe] # kinetic energy
KE = [ke] # potential energy
E = [e] # total energy
pts = len(t)-1
# loop to solve harmonic oscillator
for i in range(pts):
# simple Euler method
xi = x[i] + h*(w**2)*v[i]
vi = v[i] - h*x[i]
# get energies
pe = 0.5*k*(xi**2)
ke = 0.5*m*(vi**2)
e = pe + ke
# store to arrays
x.append(xi)
v.append(vi)
PE.append(pe)
KE.append(ke)
E.append(e)
return t,x,v,PE,KE,E
# ***************************************************
# solve 1D harmonic oscillator by modified Euler method
# ***************************************************
#----------------------------------------------------
# t0,ft = time to oscillate over
# x0 = initial position
# v0 = initial velocity
# h = time step
# w = oscillation freq (omega)
# m = mass
#----------------------------------------------------
def modifiedEulerSHM(t0,tf,x0,v0,h,w,m):
# define initial parameters
k = m*(w**2) # spring constant
pe = 0.5*k*(x0**2) # potential energy
ke = 0.5*m*(v0**2) # kinetic energy
e = pe + ke # total energy
# setup array for storing solutions
t = np.arange(t0,tf,h) # time
x = [x0] # position
v =[v0] # velocity
PE = [pe] # kinetic energy
KE = [ke] # potential energy
E = [e] # total energy
pts = len(t)-1
# loop to solve harmonic oscillator
for i in range(pts):
# modified Euler method
xii = x[i] + 0.5*h*(w**2)*v[i]
vii = v[i] - 0.5*h*x[i]
xi = x[i] + h*vii
vi = v[i] - h*xii
# get energies
pe = 0.5*k*(xi**2)
ke = 0.5*m*(vi**2)
e = pe + ke
# store to arrays
x.append(xi)
v.append(vi)
PE.append(pe)
KE.append(ke)
E.append(e)
return t,x,v,PE,KE,E
# ***************************************************
# set initial parameters
t0 = 0
tf = 10
x0 = 0
v0 = 1
h = 0.1
w = 1
m = 1
# call Euler SHM methods above
t1,x1,v1,PE1,KE1,E1 = simpleEulerSHM(t0,tf,x0,v0,h,w,m)
t2,x2,v2,PE2,KE2,E2 = modifiedEulerSHM(t0,tf,x0,v0,h,w,m)
# get analytic solution for comparison
xAct = x0*np.cos(w*t1) + (1.0/w)*np.sin(w*t1)
vAct = -x0*w*np.sin(w*t1) + np.cos(w*t1)
# get errors between numerical and analytic solutions
Err1 = np.abs(xAct-np.array(x1))
Err2 = np.abs(xAct-np.array(x2))
# plot position vs time for both methods
plt.figure(1)
plt.subplot(2,1,1)
plt.plot(t1,x1,'b.-', label='Position')
plt.plot(t1,v1,'r.-', label='Velocity')
plt.plot(t1,E1,'g.-', label='Energy')
plt.ylim(-1.5,1.5)
plt.legend(loc=3)
plt.subplot(2,1,2)
plt.plot(t2,x2,'b.-', label='Position')
plt.plot(t2,v2,'r.-', label='Velocity')
plt.plot(t2,E2,'g.-', label='Energy')
plt.ylim(-1.5,1.5)
plt.xlabel('Time')
# plot errors between numerical and analytic solutions
plt.figure(2)
plt.subplot(2,1,1)
plt.plot(t1,xAct,'r.-', label='Analytic Solution')
plt.plot(t1,x1,'b.-')
plt.plot(t1,x2,'g.-')
plt.ylabel('Position')
plt.legend(loc=3)
plt.subplot(2,1,2)
plt.plot(t1,Err1,'b.-', label='Simple Euler')
plt.plot(t1,Err2,'g.-', label='Modified Euler')
plt.xlabel('Time')
plt.ylabel('Absolute Error')
plt.ylim(-0.1,0.5)
plt.legend(loc=2)
# plot phase space velocity vs position
plt.figure(3)
plt.plot(x1,v1,'b', label='SHM Phase Space')
plt.xlabel('Position')
plt.ylabel('Velocity')
plt.legend(loc=9)
# plot potential energy vs position
plt.figure(4)
plt.plot(x1,PE1,'b', label='SHM Potential')
plt.xlabel('Position')
plt.ylabel('Potential Energy')
plt.legend(loc=9)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。