加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
image.py 6.62 KB
一键复制 编辑 原始数据 按行查看 历史
lywen 提交于 2019-12-14 14:53 . init
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Dec 8 22:49:54 2019
image
@author: chineseocr
"""
from PIL import Image
import numpy as np
import cv2
def draw_boxes(im, bboxes,color=(0,0,0)):
"""
boxes: bounding boxes
"""
tmp = np.copy(im)
c = color
h, w, = im.shape[:2]
thick = int((h + w) / 300)
i = 0
for box in bboxes:
x1,y1,x2,y2,x3,y3,x4,y4 = box[:8]
cx =np.mean([x1,x2,x3,x4])
cy = np.mean([y1,y2,y3,y4])
cv2.line(tmp,(int(x1),int(y1)),(int(x2),int(y2)),c,1,lineType=cv2.LINE_AA)
cv2.line(tmp,(int(x2),int(y2)),(int(x3),int(y3)),c,1,lineType=cv2.LINE_AA)
cv2.line(tmp,(int(x3),int(y3)),(int(x4),int(y4)),c,1,lineType=cv2.LINE_AA)
cv2.line(tmp,(int(x4),int(y4)),(int(x1),int(y1)),c,1,lineType=cv2.LINE_AA)
mess=str(i)
cv2.putText(tmp, mess, (int(cx), int(cy)),0, 1e-3 * h, c, thick // 2)
i+=1
return tmp
def draw_lines(im, bboxes,color=(0,0,0),lineW=3):
"""
boxes: bounding boxes
"""
tmp = np.copy(im)
c = color
h, w = im.shape[:2]
i = 0
for box in bboxes:
x1,y1,x2,y2= box
cv2.line(tmp,(int(x1),int(y1)),(int(x2),int(y2)),c,lineW,lineType=cv2.LINE_AA)
i+=1
return tmp
def letterbox_image(image, size):
'''resize image with unchanged aspect ratio using padding'''
image_w, image_h = image.size
w, h = size
new_w = int(image_w * min(w*1.0/image_w, h*1.0/image_h))
new_h = int(image_h * min(w*1.0/image_w, h*1.0/image_h))
resized_image = image.resize((new_w,new_h), Image.BICUBIC)
fx = new_w/image_w
fy = new_h/image_h
dx = (w-new_w)//2
dy = (h-new_h)//2
boxed_image = Image.new('RGB', size, (128,128,128))
boxed_image.paste(resized_image, (dx,dy))
return boxed_image,fx,fy,dx,dy
def exp(x):
x = np.clip(x,-6,6)
y = 1 / (1 + np.exp(-x))
return y
def minAreaLine(coords):
"""
"""
rect=cv2.minAreaRect(coords[:,::-1])
box = cv2.boxPoints(rect)
box = box.reshape((8,)).tolist()
box = sort_box(box)
x1,y1,x2,y2,x3,y3,x4,y4=box
degree,w,h,cx,cy = solve(box)
if w<h:
xmin =(x1+x2)/2
xmax = (x3+x4)/2
ymin = (y1+y2)/2
ymax = (y3+y4)/2
else:
xmin =(x1+x4)/2
xmax = (x2+x3)/2
ymin = (y1+y4)/2
ymax = (y2+y3)/2
return [xmin,ymin,xmax,ymax]
def minAreaRectBox(coords):
"""
多边形外接矩形
"""
rect=cv2.minAreaRect(coords[:,::-1])
box = cv2.boxPoints(rect)
box = box.reshape((8,)).tolist()
box = sort_box(box)
return box
def sort_box(box):
x1,y1,x2,y2,x3,y3,x4,y4 = box[:8]
pts = (x1,y1),(x2,y2),(x3,y3),(x4,y4)
pts = np.array(pts, dtype="float32")
(x1,y1),(x2,y2),(x3,y3),(x4,y4) = _order_points(pts)
return x1,y1,x2,y2,x3,y3,x4,y4
from scipy.spatial import distance as dist
def _order_points(pts):
# 根据x坐标对点进行排序
"""
---------------------
作者:Tong_T
来源:CSDN
原文:https://blog.csdn.net/Tong_T/article/details/81907132
版权声明:本文为博主原创文章,转载请附上博文链接!
"""
x_sorted = pts[np.argsort(pts[:, 0]), :]
# 从排序中获取最左侧和最右侧的点
# x坐标点
left_most = x_sorted[:2, :]
right_most = x_sorted[2:, :]
# 现在,根据它们的y坐标对最左边的坐标进行排序,这样我们就可以分别抓住左上角和左下角
left_most = left_most[np.argsort(left_most[:, 1]), :]
(tl, bl) = left_most
# 现在我们有了左上角坐标,用它作为锚来计算左上角和右上角之间的欧氏距离;
# 根据毕达哥拉斯定理,距离最大的点将是我们的右下角
distance = dist.cdist(tl[np.newaxis], right_most, "euclidean")[0]
(br, tr) = right_most[np.argsort(distance)[::-1], :]
# 返回左上角,右上角,右下角和左下角的坐标
return np.array([tl, tr, br, bl], dtype="float32")
def solve(box):
"""
绕 cx,cy点 w,h 旋转 angle 的坐标
x = cx-w/2
y = cy-h/2
x1-cx = -w/2*cos(angle) +h/2*sin(angle)
y1 -cy= -w/2*sin(angle) -h/2*cos(angle)
h(x1-cx) = -wh/2*cos(angle) +hh/2*sin(angle)
w(y1 -cy)= -ww/2*sin(angle) -hw/2*cos(angle)
(hh+ww)/2sin(angle) = h(x1-cx)-w(y1 -cy)
"""
x1,y1,x2,y2,x3,y3,x4,y4= box[:8]
cx = (x1+x3+x2+x4)/4.0
cy = (y1+y3+y4+y2)/4.0
w = (np.sqrt((x2-x1)**2+(y2-y1)**2)+np.sqrt((x3-x4)**2+(y3-y4)**2))/2
h = (np.sqrt((x2-x3)**2+(y2-y3)**2)+np.sqrt((x1-x4)**2+(y1-y4)**2))/2
#x = cx-w/2
#y = cy-h/2
sinA = (h*(x1-cx)-w*(y1 -cy))*1.0/(h*h+w*w)*2
angle = np.arcsin(sinA)
return angle,w,h,cx,cy
#####################直线处理#####################
def fit_line(p1,p2):
"""A = Y2 - Y1
B = X1 - X2
C = X2*Y1 - X1*Y2
AX+BY+C=0
直线一般方程
"""
x1,y1 = p1
x2,y2 = p2
A = y2-y1
B = x1-x2
C = x2*y1-x1*y2
return A,B,C
def line_point_line(point1,point2):
"""
A1x+B1y+C1=0
A2x+B2y+C2=0
x = (B1*C2-B2*C1)/(A1*B2-A2*B1)
y = (A2*C1-A1*C2)/(A1*B2-A2*B1)
求解两条直线的交点
"""
A1,B1,C1 = fit_line(point1[0],point1[1])
A2,B2,C2 = fit_line(point2[0],point2[1])
x = (B1*C2-B2*C1)/(A1*B2-A2*B1)
y = (A2*C1-A1*C2)/(A1*B2-A2*B1)
return x,y
def sqrt(p1,p2):
return np.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
def point_to_points(p,points,alpha=10):
##点到点之间的距离
sqList = [ sqrt(p,point) for point in points]
if max(sqList)<alpha:
return True
else:
return False
def point_line_cor(p,A,B,C):
##判断点与之间的位置关系
#一般式直线方程(Ax+By+c)=0
x,y = p
r = A*x+B*y+C
return r
def line_to_line(points1,points2,alpha=10):
"""
线段之间的距离
"""
x1,y1,x2,y2 = points1
ox1,oy1,ox2,oy2 = points2
A1,B1,C1 = fit_line((x1,y1),(x2,y2))
A2,B2,C2 = fit_line((ox1,oy1),(ox2,oy2))
flag1 = point_line_cor([x1,y1],A2,B2,C2)
flag2 = point_line_cor([x2,y2],A2,B2,C2)
if (flag1>0 and flag2>0) or (flag1<0 and flag2<0):
x = (B1*C2-B2*C1)/(A1*B2-A2*B1)
y = (A2*C1-A1*C2)/(A1*B2-A2*B1)
p = (x,y)
r0 = sqrt(p,(x1,y1))
r1 = sqrt(p,(x2,y2))
if min(r0,r1)<alpha:
if r0<r1:
points1 = [p[0],p[1],x2,y2]
else:
points1 = [x1,y1,p[0],p[1]]
return points1
#####################直线处理#####################
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化