代码拉取完成,页面将自动刷新
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Dec 8 22:51:10 2019
table
@author: chineseocr
"""
import argparse
def parser():
parser = argparse.ArgumentParser(description="table lines detect")
parser.add_argument('-jpgPath', help='image file')
return parser.parse_args()
from image import letterbox_image,exp,minAreaLine,draw_lines,minAreaRectBox,draw_boxes,line_to_line,sqrt
from config import tableNetPath,GPU,SIZE
import numpy as np
import cv2
if not GPU:
tableNet = cv2.dnn.readNetFromDarknet(tableNetPath.replace('.weights','.cfg'),tableNetPath)
else:
from darknet import load_net,predict_image,array_to_image
tableNet = load_net(tableNetPath.replace('table.weights','table-darknet.cfg').encode(),tableNetPath.encode(), 0)
def dnn_table_predict(img,prob=0.5):
imgResize,fx,fy,dx,dy = letterbox_image(img,SIZE)
imgResize = np.array(imgResize)
imgW,imgH = SIZE
image = cv2.dnn.blobFromImage(imgResize,1,size=(imgW,imgH),swapRB=False)
image = np.array(image)/255
tableNet.setInput(image)
out=tableNet.forward()
out = exp(out[0])
out = out[:,dy:,dx:]
return out,fx,fy
def darknet_GPU_predict(img,prob=0.5):
imgW,imgH = SIZE
imgResize,fx,fy,dx,dy = letterbox_image(img,SIZE)
im = array_to_image(imgResize)
out = predict_image(tableNet, im)
values = []
for i in range(2*imgW*imgH):
values.append(out[i])
out = np.array(values).reshape((2,imgH,imgW))
#out = exp(out)
out = out[:,dy:,dx:]
return out,fx,fy
from skimage import measure
def get_table_rowcols(img,prob,row=100,col=100):
if not GPU:
out,fx,fy = dnn_table_predict(img,prob)
else:
out,fx,fy = darknet_GPU_predict(img,prob)
rows = out[0]
cols = out[1]
labels=measure.label(rows>prob,connectivity=2)
regions = measure.regionprops(labels)
RowsLines = [minAreaLine(line.coords) for line in regions if line.bbox[3]-line.bbox[1]>row ]
labels=measure.label(cols>prob,connectivity=2)
regions = measure.regionprops(labels)
ColsLines = [minAreaLine(line.coords) for line in regions if line.bbox[2]-line.bbox[0]>col ]
tmp =np.zeros(SIZE[::-1],dtype='uint8')
tmp = draw_lines(tmp,ColsLines+RowsLines,color=255, lineW=1)
labels=measure.label(tmp>0,connectivity=2)
regions = measure.regionprops(labels)
for region in regions:
ymin,xmin,ymax,xmax = region.bbox
label = region.label
if ymax-ymin<20 or xmax-xmin<20:
labels[labels==label]=0
labels=measure.label(labels>0,connectivity=2)
indY,indX = np.where(labels>0)
xmin,xmax = indX.min(),indX.max()
ymin,ymax = indY.min(),indY.max()
RowsLines = [p for p in RowsLines if xmin<=p[0]<=xmax and xmin<=p[2]<=xmax and ymin<=p[1]<=ymax and ymin<=p[3]<=ymax ]
ColsLines = [p for p in ColsLines if xmin<=p[0]<=xmax and xmin<=p[2]<=xmax and ymin<=p[1]<=ymax and ymin<=p[3]<=ymax ]
RowsLines = [[box[0]/fx,box[1]/fy,box[2]/fx,box[3]/fy] for box in RowsLines]
ColsLines = [[box[0]/fx,box[1]/fy,box[2]/fx,box[3]/fy] for box in ColsLines]
return RowsLines,ColsLines
def adjust_lines(RowsLines,ColsLines,alph=50):
##调整line
nrow = len(RowsLines)
ncol = len(ColsLines)
newRowsLines =[]
newColsLines =[]
for i in range(nrow):
x1,y1,x2,y2 = RowsLines[i]
cx1,cy1 = (x1+x2)/2,(y1+y2)/2
for j in range(nrow):
if i!=j:
x3,y3,x4,y4 = RowsLines[j]
cx2,cy2 = (x3+x4)/2,(y3+y4)/2
if (x3<cx1<x4 or y3<cy1<y4 ) or ( x1<cx2<x2 or y1<cy2<y2):
continue
else:
r = sqrt((x1,y1),(x3,y3))
if r<alph:
newRowsLines.append([x1,y1,x3,y3])
r = sqrt((x1,y1),(x4,y4))
if r<alph:
newRowsLines.append([x1,y1,x4,y4])
r = sqrt((x2,y2),(x3,y3))
if r<alph:
newRowsLines.append([x2,y2,x3,y3])
r = sqrt((x2,y2),(x4,y4))
if r<alph:
newRowsLines.append([x2,y2,x4,y4])
for i in range(ncol):
x1,y1,x2,y2 = ColsLines[i]
cx1,cy1 = (x1+x2)/2,(y1+y2)/2
for j in range(ncol):
if i!=j:
x3,y3,x4,y4 = ColsLines[j]
cx2,cy2 = (x3+x4)/2,(y3+y4)/2
if (x3<cx1<x4 or y3<cy1<y4 ) or ( x1<cx2<x2 or y1<cy2<y2):
continue
else:
r = sqrt((x1,y1),(x3,y3))
if r<alph:
newColsLines.append([x1,y1,x3,y3])
r = sqrt((x1,y1),(x4,y4))
if r<alph:
newColsLines.append([x1,y1,x4,y4])
r = sqrt((x2,y2),(x3,y3))
if r<alph:
newColsLines.append([x2,y2,x3,y3])
r = sqrt((x2,y2),(x4,y4))
if r<alph:
newColsLines.append([x2,y2,x4,y4])
return newRowsLines,newColsLines
def get_table_ceilboxes(img,prob,row=100,col=100,alph=50):
"""
获取单元格
"""
w,h =SIZE
RowsLines,ColsLines=get_table_rowcols(img,prob,row,col)
newRowsLines,newColsLines=adjust_lines(RowsLines,ColsLines,alph=alph)
RowsLines = newRowsLines+RowsLines
ColsLines = ColsLines+newColsLines
nrow = len(RowsLines)
ncol = len(ColsLines)
for i in range(nrow):
for j in range(ncol):
RowsLines[i]=line_to_line(RowsLines[i],ColsLines[j],32)
ColsLines[j]=line_to_line(ColsLines[j],RowsLines[i],32)
tmp = np.zeros((img.size[1],img.size[0]),dtype='uint8')
tmp = draw_lines(tmp,ColsLines+RowsLines,color=255, lineW=1)
tabelLabels=measure.label(tmp==0,connectivity=2)
regions=measure.regionprops(tabelLabels)
rboxes= []
for region in regions:
if region.bbox_area<h*w-10:
rbox = minAreaRectBox(region.coords)
rboxes.append(rbox)
return rboxes,ColsLines,RowsLines
if __name__=='__main__':
from PIL import Image
import os
config = parser()
p= config.jpgPath
if os.path.exists(p):
img =Image.open(p).convert('RGB')
rboxes,ColsLines,RowsLines = get_table_ceilboxes(img,prob=0.5,row=10,col=10,alph=10)
tmp=draw_boxes(np.array(img),rboxes,(0,0,0))
Image.fromarray(tmp).save(os.path.splitext(p)[0]+'_box.jpg')
tmp = np.zeros((img.size[1],img.size[0]),dtype='uint8')
tmp = draw_lines(tmp,ColsLines+RowsLines,color=255, lineW=1)
cv2.imwrite(os.path.splitext(p)[0]+'_seg.png',tmp)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。